CITY OF ARLINGTON LANDFILL TARRANT COUNTY, TEXAS TCEQ PERMIT NO. MSW-358C

MAJOR PERMIT AMENDMENT APPLICATION

VOLUME 3 OF 6

Prepared for

City of Arlington and Republic Waste Services of Texas, Ltd.

May 2022

Prepared by

DAVID E. POE

Weaver Consultants Group, LLC

TBPE Registration No. F-3727 6420 Southwest Boulevard, Suite 206 Fort Worth, Texas 76109 817-735-9770

WCG Project No. 0023-404-11-104

This document is intended for permitting purposes only.

CITY OF ARLINGTON LANDFILL TARRANT COUNTY, TEXAS TCEQ PERMIT NO. MSW-358C

MAJOR PERMIT AMENDMENT APPLICATION VOLUME 3 OF 6

CONTENTS

PART III - SITE DEVELOPMENT PLAN

Appendix IIIE - Geotechnical Report

CITY OF ARLINGTON LANDFILL TARRANT COUNTY, TEXAS TCEQ PERMIT NO. MSW-358C

MAJOR PERMIT AMENDMENT APPLICATION

PART III – SITE DEVELOPMENT PLAN

APPENDIX IIIE GEOTECHNICAL REPORT

Prepared for

City of Arlington and Republic Waste Services of Texas, Ltd

May 2022

Prepared by

Weaver Consultants Group, LLC

TBPE Registration No. F-3727 6420 Southwest Boulevard, Suite 206 Fort Worth, TX 76109 817-735-9770

WCG Project No. 0023-404-11-102

This document intended for permitting purposes only.

5-19-2022

CONTENTS

1	INTR	ODUCTION	IIIE-1
2	LABO	PRATORY TESTING	IIIE-2
	2.1	Introduction	IIIE-2
	2.2	Classification Tests	IIIE-3
		2.2.1 Material Strength Tests	IIIE-3
		2.2.2 Coefficient of Permeability Tests	IIIE-3
		2.2.3 Consolidation Tests	IIIE-4
		2.2.4 Moisture-Density Relationships	IIIE-4
	2.3	Conclusion of Laboratory Testing	IIIE-4
3	SITE	STATIGRAPHY AND SOIL PROPERTIES	IIIE-5
	3.1	General	IIIE-5
	3.2	Generalized Site Stratigraphy	IIIE-5
	3.3	Soil Properties	IIIE-6
		3.3.1 Stratum A	IIIE-6
		3.3.2 Stratum B	IIIE-7
		3.3.3 Stratum C	IIIE-8
		3.3.4 Stratum D DAVID E. POE	IIIE-9
		3.3.5 Stratum E 81734 81734	IIIE-10
4	CONS	STRUCTION CONSIDERATIONS	IIIE-12
	4.1	Company	11112 40
	4.2	Material Requirements for Landfill Components	SZZ IIIE-12
	4.3	Landfill Excavation	IIIE-15
	4.4	Soil Liner Construction	IIIE-15
	4.5	Drainage Materials	IIIE-16
•	4.6	Liner and Overliner Protective Cover	IIIE-17
	4.7	Operational Cover Soils	IIIE-17
	4.8	Composite Final Cover Construction	IIIE-17
		4.8.1 Final Cover Infiltration Layer Construction	IIIE-17
		4.8.2 Final Cover Erosion Layer Construction	IIIE-17
	4.9	Perimeter Embankment Construction	IIIE-18
	4.10	Overliner System Construction	IIIE-18
	<i>1</i> . 11	Conoral Farth Fill Construction	IIIF_10

CONTENTS (Continued)

5	SLO	PE STABILITY ANALYSIS	IIIE-20
	5.1	General	IIIE-20
	5.2	Sections Selected for Analysis	IIIE-21
	5.3	Configurations Analyzed	IIIE-21
	5.4	Input Parameters	IIIE-22
	5.5	Results of Stability Analysis	IIIE-27
		5.5.1 Stability Analysis Using SLIDE2	IIIE-27
		5.5.2 Infinite Slope Stability Analysis	IIIE-29
		5.5.3 Bottom Liner Geosynthetic Conformance Testing	IIIE-29
6	SETT	FLEMENT, STRAIN, AND HEAVE ANALYSIS	IIIE-30
	6.1	General	IIIE-30
	6.2	Foundation/Bottom Liner Settlement and Strain	IIIE-30
	6.3	Final Cover Settlement and Strain	IIIE-31
	6.4	Overliner Settlement	IIIE-32
	6.5	Foundation Heave	IIIE-33
7	CON	CLUSIONS AND RECOMMENDATIONS	IIIE-34

APPENDIX IIIE-A

Slope Stability Analysis

APPENDIX IIIE-B

Foundation Settlement and Heave Analysis

APPENDIX IIIE-C

Laboratory Test Results

TABLES

<u>Tabl</u>	<u>e</u>	Page No.
2-1	Geotechnical Test Methods Performed	IIIE-3
3-1	Summary of Existing Geotechnical Data	IIIE-9
3-2	Typical Soil Requirements for Landfill Construction	IIIE-20
4-1	Soil Liner and Overliner Properties	IIIE-23
5-1	Summary of Material Weight and Strength Parameters Used in the Slope Stability Analysis	IIIE-31
5-2	Summary of Slope Stability Analysis for the Excavation Configuration	IIIE-34
5-3	Summary of Slope Stability Analysis for Overliner Landfill Configurations	IIIE-35
5-4	Summary of Slope Stability Analysis for Interim Final Landfill Configuration	IIIE-35

1 INTRODUCTION

The purpose of this report is to present the geotechnical analysis and design for the proposed major permit amendment for the vertical and lateral expansion of the City of Arlington Landfill. This report is based on the geotechnical testing information that has previously been compiled from the subsurface investigations at the site for previous permit amendments.

This appendix addresses § 330.63(e)(5)(A) and (B).

This report contains a compilation of geotechnical testing and design information, including:

- Presentation of the geotechnical (field and laboratory) and geological information compiled during previous permit amendment applications and incorporated into his amendment.
- Slope stability analyses based on the geotechnical testing results and subsurface conditions, including groundwater, for landfill excavations, landfill completion, overliner systems, and sequence of development (interim condition analysis) plans; and
- Settlement and heave analyses, which are also based on the landfill excavation and completion plans.

An independent settlement and strain analysis has been prepared for the West Disposal Area (WDA) overliner system as included in Appendix IIIE-B-3. The analysis includes evaluation of settlement and strain within the overliner system, as well as evaluation of the leachate piping system incorporated into the overliner system design. Analysis of the final cover system over the overliner area is presented in Appendix IIIE-B-2.

This report also provides geotechnical recommendations for construction of the landfill components, including bottom liner, overliner, and final cover systems with geosynthetic materials. The construction quality control and material and construction specifications for the groundwater protection components of the landfill are provided in Appendix IIID – Liner Quality Control Plan (LQCP).

2 LABORATORY TESTING

2.1 Introduction

Numerous geological investigations have been performed at the City of Arlington Landfill for previous permitting efforts, and are discussed in further detail in Appendix IIIG – Geology Report. The information used for the geotechnical studies presented in this appendix were derived from the 2014 permit amendment application prepared by Golder Associates (Golder), which incorporated geological field and laboratory investigations performed by Golder in 2008/2009 and 2010/2011, as well as earlier studies as referenced in Appendix IIIG – Geology Report. Discussion of the investigation findings is presented below.

Previous activities included the sampling and geotechnical testing of samples obtained during the investigations. A brief description of the geological/geotechnical characteristics for the strata identified at the site is presented in Section 3 of this appendix. Additional geological and hydrogeological discussion is provided in Appendix IIIG – Geology Report of this application.

Laboratory tests were conducted on select samples recovered from the borings drilled to evaluate the physical and engineering properties of the different strata. Laboratory tests were performed in general accordance with ASTM procedures. Available laboratory testing results from the previous investigations are provided in Appendix IIIE-C and on boring logs included in Appendix IIIG – Geology Report. A summary of the laboratory tests performed is given in Table 2-1. The results of laboratory testing are summarized in the material descriptions presented in Section 3 of this appendix.

Table 2-1
Geotechnical Test Methods Performed

Test	Test Method
Sieve Analysis (Passing No. 200)	ASTM D 1140
Atterberg Limits (Liquid & Plastic Limit)	ASTM D 4318
Moisture Content	ASTM D 2216
Unconfined Compression	ASTM D 2166 & Pocket Penetrometer
Triaxial Compression Test	ASTM D 4767
	Vertical - ASTM D 5084 Method F
Coefficient of Permeability (Hydraulic Conductivity)	Horizontal – ASTM D4044 and D8084 Method F
Consolidation	ASTM D 2435
Hand Penetrometer Testing	ASTM D 2573
Standard Proctor	ASTM D 698

2.2 Classification Tests

Classification tests consisting of Atterberg limits, percent passing the number 200 sieve, dry unit weight, and moisture content were performed on selected soil samples recovered from boreholes. Classification tests were used to characterize the soils according to the Unified Soil Classification System (USCS) and to evaluate physical properties of the soils. The test results for the strata identified at the site are presented in Section 3 of this appendix.

2.2.1 Material Strength Tests

Material strength tests were performed to provide generalized strength parameters that were used to evaluate the soils at the site. Additionally, triaxial testing was performed to develop strength profiles for selected strata. The triaxial testing was performed for both drained (long-term) and undrained (short-term) conditions. The test results for the strata identified at the site are presented in Section 3 of this appendix.

2.2.2 Coefficient of Permeability Tests

Laboratory hydraulic conductivity tests were performed to evaluate the hydrogeological properties of the soils and shale at the site. Additional discussion regarding the permeability testing is presented in Appendix IIIG – Geology Report.

2.2.3 Consolidation Tests

The 2014 permit amendment application incorporated conservative consolidation values for select soil and shale layers. Soil consolidation properties were developed from laboratory test results, and the consolidation properties of the shale and unweathered shale were developed from literature research combined with review of laboratory test results for the stata. This previously developed information was used to calculate the settlement and heave characteristics of the landfill and underlying foundation strata for this application.

The results of the consolidation testing are presented in Appendix IIIE-C. The settlement analyses presented in Appendix IIIE-B incorporate the test results and reference papers from the 2014 permit amendment application.

2.2.4 Moisture-Density Relationships

Standard Proctor laboratory compaction tests were performed during previous liner construction activities at the site. The tests were performed to evaluate the moisture-density relationship of the materials. Remolded samples for coefficient of permeability tests were compacted by static loading the sample to approximately 95 percent of the Standard Proctor maximum dry density at approximately the optimum moisture content determined from the Proctor test. These values were reviewed for comparison with typical landfill liner properties incorporated into the stability analyses. The results to date demonstrate that the upper clays and weathered shales are suitable for liner construction, and able to achieve the 1x10-7 cm/sec permeability criteria. Sufficient soil quantities suitable for liner and final cover construction is available on-site, although alternatively clayey soils may be imported from off-site borrow areas.

2.3 Conclusion of Laboratory Testing

Classification testing along with unit weight, moisture content, and sieve analysis results were used to support field observations during subsurface explorations. Testing results were also used to support the subsurface characterization which includes the three formations that exist generally across the site. Additionally, soil strength parameters from both field and laboratory were conservatively generalized and selected for use in the geotechnical stability analysis.

3 SITE STATIGRAPHY AND SOIL PROPERTIES

3.1 General

This section of the report includes the generalized stratigraphy for the site, typical properties of subsurface soils, potential uses of materials that may be excavated during construction, and soil material requirements for various components of the landfill.

The laboratory test results for soil samples obtained from the site are summarized in the material descriptions for each subsurface stratum below. Laboratory testing information is presented in Appendix IIIE-C.

3.2 Generalized Site Stratigraphy

The site stratigraphy has been illustrated through a series of five cross-sections, as shown in Appendix IIIG-C of Appendix IIIG – Geology Report. These cross-sections utilize seven previous subsurface investigations performed by EMCON-Baker Shiflett, Golder, Shaw Environmental, and The Carel Corporation. The descriptions from the 2014 permit application have been excerpted below. The results of the subsurface investigations show that the Facility is underlain by five main strata in the upper 100 feet below grade, namely (in order from ground surface down):

- Stratum A Alluvium: The upper portion of the profile ranging from the ground surface to an approximate elevation of 468 ft-msl consists of interbedded fine- and coarse-grained soils. A majority of the soils are fine-grained and classified as low and high plasticity clays and silts. The coarse-grained soils were found in discontinuous pockets and classified as clayey sand, silty sand, and sand. The landfill is designed to generally penetrate Stratum A.
- Stratum B Alluvium with gravel: This laterally discontinuous stratum comprises the first water-bearing zone. Stratum B primarily consists of coarse-grained soils with an increasing amount of gravel sized particles. These soils are primarily classified as clayey sand, silty sand, and sand. Discontinuous pockets of well-graded and poorly-graded gravel were also identified. The landfill is designed with a portion of the bottom to be founded on Stratum B and a portion to penetrate Stratum B.

- Stratum C Weathered Woodbine, Non-Transmissive: This stratum is identified as the weathered upper, non-transmissive portion of the Woodbine formation. The top of this unit is generally identified by a layer of shaley clay, the top of which represents the unconformity surface between the Quaternary age alluvium and the underlying Cretaceous age Woodbine. The materials encountered within this stratum exhibit characteristics of both soil and rock depending on the amount of weathering the materials have experienced. The shale portion of the Woodbine is weathered into a shaley clay or shaley silt. The western expansion of the landfill is designed with a portion of the bottom to be founded on Stratum C and a portion to penetrate Stratum C.
- Stratum D Transmissive Woodbine: This stratum is composed of sands, sandstone and interbedded sandstone and shale units of the Woodbine. The sandstone portions is variably weathered, with some portions weathered to sand.
- Stratum E Unweathered/Competent Woodbine Shale: This stratum is composed of the unweathered/competent shale of the Woodbine formation. The bedrock materials were identified as a laterally continuous shale and discontinuous zones of siltstone with a few pockets of limestone at depth. The westernmost portion of the landfill is designed to be primarily founded on Stratum E.

In some areas of the Facility, the near-surface stratigraphy (Stratums A and B) has been disturbed or removed during past sand and gravel mining conducted on the property and by landfilling activities.

3.3 Soil Properties

The physical properties of the strata at the Facility are summarized in the following sections.

3.3.1 Stratum A

This stratum is described as interbedded fine- and coarse-grained soils. A majority of the soils are fine-grained and classified as low and high plasticity clays and silts. The coarse-grained soils were found in discontinuous pockets and classified as clayey sand, silty sand, and sand. Across the Facility, the top of Stratum A was found between approximate elevations of 496 to 456 ft-msl. The average top of layer is approximately at elevation 468 ft-msl. The thickness of this layer ranges between 1 and 72 feet, with an average thickness of approximately 22 feet.

Table 3-1 summarizes the properties of Stratum A. This is a compilation of the results from the former geotechnical studies. The test method listed is the method performed during the investigations.

Table 3-1
Properties of Stratum A¹

ltem		Minimum Value	Maximum Value	Average	Number of Tests	Test Method
Water Content		5	66	18	130	ASTM D2216
Liquid Limit ²		13	70	41	72	ASTM D4318
Plastic Limit ²		11	37	17	72	ASTM D4318
Plasticity Index ²		1	47	23	72	ASTM D4318
Liquidity Index		-0.61	2.00	0.10	62	ASTM D4318
Dry Unit Weight (po	rf)	90.2	134.0	109.6	31	ASTM D2937 (Modified)
Wet Unit Weight (po	cf)	110.4	154.1	131.6	29	ASTM D2937 (Modified)
Percent Passing #200		4 .	97	65.	65	ASTM D6913
Unconsolidated Undrained Triaxial cu (psf)		785	3521	2048	5	ASTM D2850
Consolidated	c' (psf)	170	482	326	2	ASTM D4767
Undrained Triaxial	φ' (deg)	21	28	25	2	ASIM D4707
	CCE	0.07	0.13	0.11		
Consolidation	CrE	0.009	0.020	0.012	4	ASTM D2435
	O'p (psf)	2000	6200	4050		
Vertical Permeabili	ty (cm/sec)	5.7x10 ⁻⁷	-	-	1	ASTM D5084 ³
Horizontal Permeal (cm/sec)	oility ⁴	2.7x10 ⁻⁹	5.7x10 ⁻⁷	a. 8.7x10 ⁻⁸ G. 1.7x10 ⁻⁸	8	ASTM D5084 Falling Head

¹ Soil samples SH (Shelby tube) and SS (split spoon) samples.

3.3.2 Stratum B

This stratum consists of coarse-grained soils with an increasing amount of gravel sized particles locally found near the base of the unit in some areas. These soils are primarily classified as clayey sand, silty sand, sand, and gravel. Discontinuous pockets of well-graded and poorly-graded gravel were also identified. The Stratum B soils comprise the first water-bearing zone at the Facility. Across the Facility, the top of Stratum B was found between approximate elevations of 488 to 400 ft-msl.

 $^{^2\,1}$ NP (non-plastic) result. The NP result was not incorporated into the average value.

 $^{^{\}rm 3}$ EMCON Baker-Shiflett, Inc. performed this test; we have assumed the test method.

⁴ Both the arithmetic and geometric means of the horizontal permeability are reported for the average.

The average top of layer is approximately at elevation 447 ft-msl. The thickness of this layer ranges between 1 to 48 feet, with an average thickness of 10 feet.

Table 3-2 summarizes the properties of Stratum B. This is a compilation of the results from the former geotechnical studies. The test method listed is what was performed during the investigations.

Table 3-2 Properties of Stratum B¹

ltem		Minimum Value	Maximum Value	Average	Number of Tests	Test Method
Water Content		5	25	15	21	ASTM D2216
Liquid Limit		17	25	20	8	ASTM D4318 ²
Plastic Limit		13	25	17	8	ASTM D4318 ²
Plasticity Index ³		1	8	4	8	ASTM D4318 ²
Dry Unit Weight	(pcf)	110.8	116.9	113.9	2	ASTM D2937 (Modified)
Wet Unit Weight (pcf)		131.9	134.4	133.2	2	ASTM D2937 (Modified)
Percent Passing #200		4	58	27	23	ASTM D6913
Unconsolidated Undrained c _u (psf) Triaxial		3341		-	1	ASTM D2850
Consolidated	c' (psf)	620	-	-		
Undrained Triaxial	φ (deg)	22	-	-	1	ASTM D4767 ²
Posidual Shoar	c (psf)	140	_	No.	1	ASTM D3080 ²
Residual Shear φ(de		44	-		1	A31M D3000-
Vertical Permeability (cm/s)		7.1x10-6	-		1	ASTM D5084 ³ Falling Head
Horizontal Perm (cm/s)	eability ⁴	5.5x10 ⁻⁷	6.5x10 ⁻²	a. 2.1x10- ² G. 4.9x10- ³	13	ASTM D4044 and ASTM D5084 Falling Head

¹ Soil samples are Shelby Tube and Split Spoon samples.

3.3.3 Stratum C

Stratum C is described as the non-transmissive, weathered upper portion of the Woodbine Formation. The materials encountered within this stratum exhibit characteristics of both soil and rock depending on the amount of weathering the

² EMCON Baker Shiflett, Inc. performed these tests. The test method is assumed.

³ 2 NP (Non-Plastic) Results. The NP results were not incorporated into the average value.

⁴ Both the arithmetic and geometric means of the horizontal permeability are reported for the average.

materials have experienced. The shale portion of the Woodbine is locally weathered into a shaley clay or shaley silt. Lesser weathered portions still retain their shale characteristics. Across the Facility the top of Stratum C was found between approximate elevations of 486 to 395 ft-msl. The average top of layer is approximately at elevation 441 ft-msl. The thickness of this layer ranges between 1 to 48 feet, with an average thickness of approximately 9 feet.

Table 3-3 summarizes the properties of Stratum C. This is a compilation of the results from the former geotechnical studies. The test method listed is the method performed during the investigations.

Table 3-3 Properties of Stratum C¹

ltem	i s	Minimum Value	Maximum Value	Average	Number of Tests	Test Method
Water Content		2	35	16	60	ASTM D2216
Liquid Limit		28	63	49	20	ASTM D4318
Plastic Limit		15	34	24	20	ASTM D4318
Plasticity Index		12	42	26	20	ASTM D4318
Liquidity Index		-0.65	0.58	-0.30	18	ASTM D4318
Dry Unit Weight (pcf)	104.0	144.5	121.4	21	ASTM 02937 (Modified) ²
Wet Unit Weight	(pcf)	121.7	151.9	137.0	20	ASTM D2937 (Modified) ²
Percent Passing #200		13	97	76	12	ASTM D6913 (Modified) ²
Consolidated	c' (psf)	2460	-	-	1	ASTM 04767 ²
Undrained Triaxial	φ' (deg)	44	-	-	1	
Vertical Permeability ³ (cm/sec)		5.6x10 ⁻⁹	1.7x10 ⁻⁷	a. 5.5x10 ⁻⁸ G. 3.1x10 ⁻⁸	5	ASTM 05084 falling head"
Horizontal Permeability ³ (cm/sec)		3.0x10 ⁻⁹	3.2x10 ⁻⁷	a. 8.8x10 ⁻⁸ G. 1.8x10 ⁻⁸	4	ASTM 05084 falling head
Unconfined Comp Strength (ksf)	oressive	7.3	129.3	57.3	3	ASTM D7012
Unconsolidated Undrained Triaxial	c _u (psf)	4648	-	-	1	ASTM 02850

¹ Soil samples are Shelby Tube and Split-Spoon samples. Rock samples are core samples.

3.3.4 Stratum D

This stratum is composed of sands, sandstone and interbedded sandstone and shale units of the Woodbine. The sandstone portions are variably weathered, with some

² EMCON Baker — Shiflett, Inc. performed a portion of these tests; their test method was assumed.

³ Both the arithmetic and geometric means of the vertical permeability are reported for the average.

originally sandstone portions weathered to sand. Across the Facility, the top of Stratum D was found between approximate elevations 473 to 393 ft-msl. The average top of Stratum D is at approximate elevation 441 ft-msl. The thickness of this layer ranges between 1 to 52 feet, with an average thickness of approximately 12 feet.

Table 3-4 summarizes the properties of Stratum D. This is a compilation of the results from the former geotechnical studies. The test method listed is the method performed during the investigations.

Table 3-4
Properties of Stratum D¹

Item		Minimum Value	Maximum Value	Average	Number of Tests	Test Method
Water Content		0	22	12	12	ASTM D2216
Dry Unit Weight (pcf)	100.3	157.9	118.8	8	ASTM D2937
Wet Unit Weight (pc	f)	100.4	158.4	129.6	8	(Modified) ASTM D2937
Percent Passing #20	0	38.4	-	-	1	ASTM D6913
Vertical Permeability	7 ² (cm/s)	6.3x10 ⁻¹⁰	8.5x10 ⁻⁸	a. 3.2x10 ⁻⁸ G. 8.0x10 ⁻⁹	3	ASTM D5084 Falling Head
Horizontal Permeabi (cm/s)	lity ²	5.2x10 ⁻¹⁰	6.2x1 0 ⁻⁴	a. 2.6x10 ⁻⁴ G. 3.8x10 ⁻⁶	4	ASTM D5084 Falling Head
Unconfined Compres Strength (ksf)	ssive	4.1	8.9	6.5	2	ASTM D7012
Unconsolidated Undrained Triaxial	Cu (psf)	6147	-	-	1	ASTM D2850

¹ Rock samples are core samples.

3.3.5 Stratum E

Stratum E is described as the unweathered/competent shale of the Woodbine formation. The bedrock materials were identified as laterally continuous shale, and discontinuous zones of siltstone with a few pockets of limestone at depth. Within the upper portion of this formation, the bedrock was highly laminated and thinly interbedded intervals, while the lower portion consisted primarily of massive shale. Across the Facility, the top of Stratum E was found between approximate elevations of 472 to 394 ft-rnsl. The average top of Stratum E is at approximate elevation 429 ft-msl. The thickness of this layer ranges between 2 to 81 feet, with an average thickness of approximately 35 feet. Stratum E represents the aquiclude underlying the Facility.

² Both the arithmetic and geometric means of the vertical permeability are reported for the average.

Table 3-5 summarizes the properties of Stratum E. This is a compilation of the results from the former geotechnical studies. The test method listed is the method performed during the investigations.

Table 3-5 Properties of Stratum E¹

ltem	Minimum Value	Maximum Value	Average	Number of Tests	Test Method
Water Content	5	19	11	23	ASTM D2216
Liquid Limit	45	-		1	ASTM D4318 ²
Plastic Limit	18	-	-	1	ASTM D4318 ²
Plasticity Index	27	-	-	1	ASTM D4318 ²
Liquidity Index	-0.22	-	-	1	ASTM D4318 ²
Dry Unit Weight (pcf)	108.0	149.1	127.6	23	ASTM D2937 ² (Modified)
Wet Unit Weight (pcf)	128.0	156.0	141.7	23	ASTM D2937 ² (modified)
Vertical Permeability (cm/sec)	9.6x10 ⁻⁹	3.5x10 ⁻⁷	a. 1.1X10 ⁻⁷ G. 4.3X10 ⁻⁸	5	ASTM D5084 falling head
Horizontal Permeability³ (cm/sec)	1.7x10 ⁻⁹	1.5x10 ⁻⁶	a. 5.0x10 ⁻⁷ G. 1.7x10 ⁻⁸	3	ASTM D5084 falling head
Unconfined Compressive Strength (ksf)	3.9	284.4	62.3	15	ASTM D7012

¹ Rock samples are core samples.

² EMCON Baker-Shiflett, Inc. performed a portion of these tests; the test method was assumed.

³ Both the arithmetic and geometric means of the vertical and horizontal permeability are reported for the average.

4 CONSTRUCTION CONSIDERATIONS

4.1 General

This section contains recommendations for excavation of the landfill, and soil liner, leachate collection layer, overliner, and final cover materials and construction. Additionally, operational cover soils, final cover construction, and perimeter embankment construction related recommendations are included in this section.

The existing 774.3-acre permit boundary will not be changed with this amendment application. The permitted limit of waste will be changed by 7.8 acres, from approximately 382.7 acres to approximately 390.5 acres. A major component of this amendment application is the rerouting of Hurricane Creek to allow the East Disposal Area and West Disposal Area to be reconfigured into one contiguous disposal area.

The currently developed Subtitle D liners of the landfill include groundwater dewatering systems for temporary groundwater hydrostatic uplift pressure relief. The future Sectors 6 through 12 will also require temporary groundwater uplift control in the bottom sideslopes of the excavation and as described in Appendix IIID-C of Appendix IIID – LQCP.

4.2 Material Requirements for Landfill Components

Construction of the landfill will require clay or clayey soils which can be compacted to have an in-place hydraulic conductivity of $1x10^{-7}$ cm/sec or less for the soil liner portion of the composite liner, overliner, and an in-place hydraulic conductivity of $1x10^{-5}$ cm/s for the soil infiltration layer of the composite final cover system.

Soil will also be required for protective cover on the liner and overliner, operational cover (daily cover, intermediate cover), the infiltration and erosion layer components of the composite final cover, berm construction, and other miscellaneous general fill. Granular material (i.e., gravel) will be used for the leachate collection sumps, leachate collection chimneys and may be used for groundwater dewatering collection trenches. Typical material requirements for various soil structures are summarized in Table 4-1.

Testing requirements and construction quality control and quality assurance for liner soils are detailed in Appendix IIID - LQCP. Testing requirements and construction quality control and quality assurance for final cover soils are detailed in Appendix IIIJ - Closure Plan and in Appendix IIIJ-A - Final Cover System Quality Control Plan (FCSQCP). Liner and final cover details are presented in Appendix IIIA-A – Liner, Overliner, and Final Cover System Details.

Typical Soil Requirements for Landfill Construction Table 4-1

				Test	Test Parameters	rs	
Landfill Component	Soil Description	Classification	77	ld	% – 200	Coefficient of Permeability cm/s	Material
Soil Liner	clayey sand, sandy clay, or clay	SC, CL, CH	30 min	15 min	30 min	1x10- ⁷ max	On site1
Final Cover Infiltration Layer	clayey sand, sandy clay, or clay	SC, CL, CH	30 min	15 min	30 min	1x10 ⁻⁵ max ²	On site
Liner Protective Cover	sand or sand with silt and clay	SP-SM, SP, SP-SC, SW, SM or SM-SC				1x10 ⁻⁴ min	On site ²
Final Cover Erosion Layer	clayey sand, sandy clay, or clay	SC, CL, SM	Sui	table to sı	Suitable to support plant growth	ıt growth	On-site
Operational Cover ² (Daily Cover and, clayey sand, sandy and Intermediate Cover)	sand, clayey sand, sandy clay, or clay	SP, SC, CL, CH	(2)	(2)	(2)	(2)	On-site
Earth Fill: Perimeter Berm and Subgrade Preparation	clayey sand, sandy clay, or clay	SC, CL, CH	ł	!	ŀ	1	On-site

If on-site materials meeting the required properties do not exist, an off-site material source can be used for liner soil.
 If on-site material does not meet the hydraulic conductivity criteria, leachate collection chimney drains will be extended through the protective cover at selected locations and will be exposed adequately for transmission of leachate to the collection system.

4.3 Landfill Excavation

The excavation for the bottom liner construction will be performed in a manner that will achieve reasonable segregation of liner quality material from soils that are not suitable for a liner. Soil materials to be used for liner construction will be stockpiled separately, according to construction material properties outlined in Section 4.4 and visual observation during excavation.

Excavation of the soils encountered will be achieved with equipment such as excavators. Local areas of the hard shale or cemented sands may be encountered intermittently within the excavation and/or as the depth of excavation into Unweathered Shale. These zones can be broken up with an excavator equipped with a hydraulic hammer tool or ripped. The hydraulic hammer may be fitted with a pointed chisel or moil for the hard shale or a blunt tool for harder cemented material. Blasting of hard rock will not be required and will not be used at this site.

Excavation side slopes will be graded no steeper than 3 horizontal to 1 vertical (3H:1V). Temporary slopes during excavation may be steeper. Excavation cut slopes within the future sector construction areas may require erosion protection if an extended period of time occurs between excavation and liner construction. Interim erosion protection can be accomplished by diverting runoff away from the slopes. "Track walking" with a bulldozer up and down the slopes will create the effect of "mini-dikes" with the bulldozer tracks, which will reduce erosion.

Prior to beginning construction of the liner components, the subgrade area will be stripped to a depth sufficient to remove all loose surface soils or soft zones within the exposed excavation. The liner base grades will be proof-rolled with heavy, rubber-tired construction equipment or equivalent to detect soft areas. Soft areas will be undercut to firm material and backfilled with suitable compacted clay fill, as discussed in Appendix IIID – LQCP. Preparation of the liner base grades will result in a surface that is stable and that does not exhibit significant rutting from the construction traffic. The prepared liner base grades will be approved by a Professional of Record (POR), tested to verify that it meets the requirements outlined in Appendix IIID – LQCP, and surveyed to verify grades.

4.4 Soil Liner Construction

The bottom and sides of the landfill excavation consists of 2-foot-thick compacted soil liner. The clay liner will have a maximum hydraulic conductivity of 1×10^{-7} cm/s. Details for the liner system are provided in Appendix IIIA (Appendix IIIA-A). Adequate soil liner material will be available from proposed landfill excavations, onsite, or offsite borrow sources to provide material for the liner construction. Preconstruction laboratory tests may be performed to verify that a borrow source soil material is adequate to meet the compacted clay liner requirements listed in

Title 30 TAC §330.339(c)(5) prior to using any soil borrow source as liner. A geosynthetic clay liner may also be used as a substitute for the clay liner.

The soils used for liner construction will have the minimum soil property values listed in Table 4-2 that will be verified by preconstruction testing in a soils laboratory. The following soil liner properties are included in Appendix IIID – LQCP.

Table 4-2
Soil Liner and Overliner Properties

Test	Specifications
Hydraulic Conductivity of Remolded Soils ¹	1.0x10 ⁻⁷ cm/s or less
Plasticity Index	15 minimum
Liquid Limit	30 minimum
Percent Passing No. 200 Mesh Sieve	30 minimum
Percent Passing 1-inch Sieve	100

A hydraulic conductivity test will be performed on soil samples remolded per ASTM D 698 in accordance with Appendix IIID – LQCP.

Representative preliminary sampling will be performed on the materials that will be used for soil liner construction. Laboratory tests of samples recovered from soil borings as well as previous testing during liner construction indicate that soils which will achieve a coefficient of permeability of less than $1x10^{-7}$ cm/s are present at the site. Prior to construction of each new liner area, conformance tests that include liquid limit, plastic limit, percent passing the No. 200 sieve, Standard Proctor (ASTM D698) and remolded hydraulic conductivity tests will be performed for the soils prepared for use as liner. Additional conformance tests will be conducted if there are visual changes in the borrow material or the liquid limit or plasticity index vary by more than 10 points. The soil liner construction and testing procedures are outlined in Appendix IIID – LQCP.

4.5 Drainage Materials

The LCS drainage material will consist of a drainage geocomposite over the entire liner bottom and side slopes. Each sector will have a bottom slope toward an LCS trench (i.e., pipe enveloped in gravel and geotextile) that will collect leachate from the bottom and sideslopes. The leachate collection system details are illustrated in Appendix IIIA (Appendix IIIA-A). The material specifications and construction procedures for the LCS components are presented in Appendix IIID – LQCP. The LCS design and demonstrations are provided in Appendix IIIC – Leachate and Contaminated Water Management Plan.

4.6 Liner and Overliner Protective Cover

The liner protective cover is required to be a minimum of 24 inches thick for both liner and overliner. The purpose of the protective cover is to protect the geosynthetics (i.e., geomembrane and drainage geocomposite) from solid waste placed over the liner system. To ensure passage of leachate into the leachate collection system, drainage passages (chimney drains) will be constructed through the protective cover. The chimney drains will be installed over the LCS collection pipes as shown in Appendix IIIA (Appendix IIIA-A). The protective cover will be placed with construction equipment in one lift such that it covers the leachate collection layer completely. The protective cover material will be free of solid waste and will not require compaction under the density-controlled construction procedures.

4.7 Operational Cover Soils

Operational cover soils include daily cover (placed over the waste each day) and intermediate cover (placed over waste in areas that will not receive additional fill for at least 6 months). All soils excavated at the site may be used for operational cover, including shale that is broken down by equipment or weathering.

4.8 Composite Final Cover Construction

4.8.1 Final Cover Infiltration Layer Construction

The infiltration layer of the final cover system will be constructed with clayey material and will be a minimum of 18 inches thick. As specified in Appendix IIIJ – Closure Plan, for areas of the landfill with a synthetic bottom liner, the infiltration layer will consist of 18 inches of earthen material with a coefficient of permeability equal to or less than 1×10^{-5} cm/s overlain by a synthetic membrane. The purpose of this layer is to reduce infiltration of surface water into the fill. The final cover components material and construction requirements will be in accordance with Appendix IIIJ-A – FCSQCP.

4.8.2 Final Cover Erosion Layer Construction

As shown in Appendix IIIA-A, the composite final cover system will include a 12-inch-thick erosion layer. The erosion layer will protect the infiltration layer and will support vegetative growth. The erosion layer may be spread and placed as a 12-inch thick lift (with soils that will support vegetation) or with two 6-inch-thick lifts (with the upper 6 inches capable of supporting vegetation) over the entire final cover area as the final cover is constructed. After spreading, each lift will be rolled lightly to reduce future erosion but not to the extent that compaction would inhibit plant growth. The top 6 inches of the erosion layer will consist of (1) topsoil

stockpiled during the excavation process, (2) other on-site excavated soils amended as necessary to be capable of sustaining vegetation, and/or (3) imported soil materials. Whether placed in a single lift or two lifts, the erosion layer (top of final cover) will sustain vegetative growth.

4.9 Perimeter Embankment Construction

Perimeter embankments (berms) previously were constructed at the landfill, and will be constructed at future sectors as required to prevent surface water flow from entering the landfill excavation. Constructed embankments will have side slopes no steeper than 3H:1V. A sufficient amount of soil is available from the landfill excavations to construct the perimeter embankment and other features that require stable soil fill material.

Prior to beginning embankment fill, the subgrade area will be stripped to a depth sufficient to remove all topsoil and vegetation. Topsoil will be stockpiled for later use. The subgrade area will be proof-rolled with heavy, rubber-tired construction equipment to detect soft areas. Soft areas will be undercut to firm material and backfilled with suitable compacted clay fill. The subgrade preparation will result in a subgrade surface that is stable and does not exhibit significant rutting from construction equipment traffic.

The embankments will be constructed of onsite soils free of organic or other objectionable materials. The general fill placed below the composite liner (i.e., over excavated areas within the liner construction area) will be spread in maximum 12-inch-thick loose lifts, placed horizontally and compacted to a minimum of 95 percent of the maximum dry density as determined by Standard Proctor testing with a moisture content at or above the optimum moisture content determined by the Standard Proctor testing. A minimum of one Standard Proctor test (ASTM D698) will be performed on each representative soil used as fill material. Each lift will receive a minimum of four passes with a heavy tamping roller unless adequate compaction can be demonstrated with fewer passes. Moisture-density field testing and full-time third party CQA monitoring during construction will be performed in accordance with Appendix IIID – LQCP. As necessary, the outside slope of all embankment construction will be vegetated to minimize erosion and desiccation.

4.10 Overliner System Construction

The overliner system consists of a 40-mil-thick LLDPE geomembrane textured on both sides, a drainage geocomposite, a geosynthetic clay liner (GCL), and a 24-inchthick protective cover soil layer. The geomembrane will be placed over a prepared bedding layer. Requirements for the overliner are set forth in Appendix IIID – LQCP.

The layout and detail drawings of the overliner system are presented in Appendix IIIA-A. Details of the overliner material and construction requirements are provided in Appendix IIID – LQCP.

4.11 General Earth Fill Construction

Earthen fill material may be required for subgrade preparation, embankments, haul roads, and other miscellaneous fill. Material availability, compactability, and long-term maintenance requirements will be considered when evaluating the excavated soils for use as earth fill. Most soils that will be excavated for landfill development are suitable for use as earth fill. General fill material placed below the composite liner (i.e., over-excavated areas within the liner construction area) will be placed in uniform loose lifts not exceeding 9 inches in thickness. General fill material for structural fill (e.g., perimeter berm construction and liner anchor trench backfill) will be placed in uniform loose lifts not exceeding 12 inches in thickness. General and structural fill will be compacted to at least 95 percent of Standard Proctor maximum dry density (ASTM D698) at a moisture content at or above the optimum moisture content when it is used for backfill below the soil liner.

5 SLOPE STABILITY ANALYSIS

5.1 General

This slope stability analysis has been developed to analyze excavation slopes, interim slopes, and landfill completion slopes using critical sections for each condition. The computer model SLIDE2 (RocScience, Inc., 2020) was used to analyze the stability of excavation slopes, interim fill slopes, and the final configuration of the site. SLIDE2 is an industry standard computer program developed by RocScience, Inc.

SLIDE2 is a two-dimensional slope stability program for evaluating the safety factor or probability of failure of circular and non-circular failure surfaces in soil or rock slopes. SLIDE2 analyzes the stability of slip surfaces using vertical slice or non-vertical slice limit equilibrium methods like Bishop, Janbu, Spencer, and Sarma, among others. Individual slip surfaces can be analyzed, or search methods can be applied to locate the critical slip surface for a given slope. SLIDE2 incorporates a windows-based interface that allows input of analysis sections and geological conditions from AutoCAD design drawings. The input file for the SLIDE2 program includes:

- Slope surface geometry.
- Subsurface information to identify different types of soil materials in horizontal and vertical directions so that each subsurface segment is identified with corresponding soil strength parameters.
- Groundwater information. The program is capable of modeling multiple groundwater surfaces that may be applicable to various subsurface soil components identified in the second bullet.
- Material strength information. Each soil section (horizontal or vertical) identified in the second bullet is assigned with strength parameters including cohesion and friction angle for both total and effective stresses.
- Model control and simulation user interface of the model that allows selection of the method of analysis (e.g., Simplified Bishop) and identifying simulation control parameters.

Automatic failure surface generation functions, that use either initiation/ termination ranges of the failure surface or use search boxes to define failure surface location, are used to locate the critical failure surface. The two methods employed for this slope stability analysis are described below.

- 1. Simplified Janbu Method This method uses the method of slices to determine the stability of the mass above a failure surface.
- 2. Simplified Bishop Method This method uses the method of slices to discretize the soil mass for determining the factor of safety.

In general, the stability of various critical sections were analyzed under static conditions for short-term (excavation and construction) and long-term (after construction) safety. The slope stability analyses are provided in Appendix IIIE-A. The stability of the various liner and final cover configurations with the geosynthetic components were also evaluated by using infinite slope stability analysis (refer to Appendix IIIE-A).

The stability analysis has been developed using demonstrations showing that, for each analyzed section, the forces resisting movement of the slopes are higher than the forces that potentially create movement. Therefore, the ratio of forces resisting movement to the forces potentially creating movement is defined as the factor of safety (FS). When the FS is equal to or greater than 1.0, it means that the slope is stable. In the slope stability analysis a factor of safety greater than 1.0 is desired. The FS value is increased for the increased uncertainty for the system analyzed. A factor of safety of 1.5 has been used for slopes that will stay in place long-term, including final cover configurations. A factor of safety of 1.3 is acceptable for total stress conditions that will be applicable for short periods of time, including interim and excavation slopes. A factor of safety of 1.0 is acceptable for residual or large deformation strength conditions (typical of Rankine-Block analyses of critical geosynthetic interfaces).

5.2 Sections Selected for Analysis

Slope stability analyses were performed on critical sections to evaluate the stability of the excavation, interim fill, overliner, and final cover configuration slopes. The geometries of the slopes analyzed were determined by reviewing the proposed excavation plan and final contour plan. The evaluation locations were selected to analyze critical slopes consisting of profiles that include the landfill configuration as well as natural materials at the toe and below the landfill excavation. The interim fill slope was analyzed using an assumed profile as discussed in Section 5.3. Figures showing the location of the cross sections are included in Appendix IIIE-A.

5.3 Configurations Analyzed

The excavation, overliner, interim, and final landfill configurations were modeled to represent critical slope conditions, and the analysis was performed using circular

and block failure surfaces. The maximum final fill and overliner slopes will be 4H:1V, while interim slopes, liner slopes, and excavation slopes will be as steep as 3H:1V. The excavation, liner, and interim fill slopes were analyzed with a slope angle of 3H:1V and a 4:1V final side slope was used to evaluate final cover and overliner. A copy of the top of liner plan and final completion plan showing the locations of the cross sections selected for analysis are included as Sheets IIIE-A-1 and IIIE-A-8 in Appendix IIIE-A. Additionally, the configurations analyzed are graphically illustrated in Sheets IIIE-A-9 through IIIE-A-16 in Appendix IIIE-A. The interim condition was analyzed considering a 3H:1V slope with a horizontal length of approximately 600 feet (200 feet vertically). If the horizontal length of actual interim slopes longer than 600 feet is developed during site operations, an additional analysis will be completed at that time and maintained in the Site Operating Record.

5.4 Input Parameters

The cross sections for slope stability analysis were developed for each of the conditions analyzed (see Figures IIIE-A-9 through IIIE-A-16). The soil parameters were selected based on a review of the boring logs and laboratory test results from the subsurface investigation studies at the site and upon engineering judgment and experience with similar materials. The groundwater surface indicated in the analysis is obtained from Appendix IIIG - Geology Report. For global analysis of the foundation conditions, a groundwater level immediately below the top of the excavation grade was assumed. For analysis of the exterior berm or slope (excavation slope analysis) a perched groundwater level above the sector excavation grade was assumed (as representative of groundwater in the upper units) and represents the highest measured groundwater levels. Table 5-1 summarizes the unit weights and strength parameters used for the stability analyses for the evaluated landfill slopes (excavation, overliner, interim, and final cover slopes).

Note that for analyzing interface failure planes along the overliner and bottom liner, a single 2-foot-thick zone was input into the SLIDE2 model and the weakest strength parameters assigned to this zone.

Table 5-1
Summary of Material Weight and Strength Parameters Used in the Slope Stability Analysis

Strength Parameters					Comments				
Soil Materia	F al Strength Par	inal Cover S ameters	ystem Interface Strengtl	h Parameters	The final cover system includes the erosion layer, drainage geocomposite (single-sided on top slopes and double-sided on 4H:1V sideslopes), geomembrane liner (smooth or textured on topslopes and textured on 4H:1V sideslopes), and compacted clay infiltration layer. An infinite stability analysis was performed to establish the minimum interface strength requirements for each layer of the final cover system. The minimum interface strength requirements specified are used for the stability analysis in Appendix IIIE-A.				
Cohesion (lb/ft²)	Friction Angle (degrees)	Unit Weight (lb/ft³)	Adhesion (lb/ft²)	Friction Angle (degrees)	For the rotational global stability analysis, the final cover system is modeled as a single layer and the strength parameters represent the compacted clay infiltration layer and the erosion layer. The two geosynthetic layers (i.e., geomembrane and geocomposite) are not included in the global analysis because they provide a negligible contribution to the forces that are resisting movement. The strength values selected for the final cover system represent strength values typically used in the industry and these same strength values have been used in various permit applications approved by TCEQ. The global stability analysis for rotational failure analysis uses the soil material strength parameters (i.e., cohesion of 100 lb/ft²				
100	16	116	Topslope 100 4H:1V 100 Sideslope	13 16	and a friction angle of 16 degrees). The global stability analysis is included in Appendix IIIE-A-3. The interface slope stability analysis for the final cover system was performed using an infinite slope stability analysis procedure by Duncan, Buchianani, and De Wet. The purpose of this analysis was to show that the final cover components that are placed on top of each other, such as a geomembrane and compacted clay layer (or geomembrane and geocomposite), will not experience sliding failure due to the lack of strength between these components. The interface strength parameters shown are based on compacted clay internal on the sideslope and smooth geomembrane and compacted clay on the top deck. The interface strength parameters were developed from Geosynthetic Research Institute (GRI) publications (e.g., "Direct Shear Database of Geosynthetic-to-Geosynthetic and Geosynthetic-to-Soil Interfaces" by George R. Koerner, GRI, Folsom, PA, June 14, 2005). Although the strength parameters (i.e., adhesion and interface friction) used for the application were selected based on published data, it should be noted that these strength parameters will also be tested and verified at the time of each final cover construction event to ensure that the as-built strength parameters meet or exceed the strength parameters used for the design (as discussed in Appendix IIIE-A). As noted in Appendix IIIE-A, the strength parameters listed are for the weakest interface (or internal) to provide for a conservative design.				
Solid Waste			ste		As noted in Appendix IIIE-A, the strength parameters for solid waste were based on information contained in the following references: Pagotto and Rimoldi (1987), Landva and Clark				
Material Strength Parameters Interface Strength Parameters			Interface Strengt	h Parameters	(1990), and Richardson and Reynolds (1991) and Kavazanjian, et al. (1995). These sources list cohesion and friction angle values that range from 210 lb/ft2 to 605 lb/ft2 and 18° (for residual strength or large displacement for direct shear test which requires a factor of safety of 1) to 43°, respectively. The selected strength values are selected to represent peak				
Cohesion (lb/ft²)	Friction Angle (degrees)	Unit Weight (lb/ft³)	Adhesion (lb/ft²)	Friction Angle (degrees)	strength for MSW. The unit weight of waste used for stability analyses is consistent with numerous analyses and permit amendment applications in Texas, including being consistent with the previous amendment application analysis for this landfill. The strength for MSW. The unit weight of waste used for stability analyses is consistent with numerous analyses and permit amendment applications in Texas, including being consistent with the previous amendment application analysis for this landfill. The strength for MSW. The unit weight of waste used for stability analyses is consistent with numerous analyses and permit amendment applications in Texas, including being consistent with the previous amendment application analysis for this landfill.				
For ϕ_p < 625 psf C = 500 psf For ϕ_p > 625 psf C = 0	33	65	Interface strength p not applicable to the layer because the between the waste and overliner sys critical inte	he solid waste ne interface and final cover stems is not a					
		Overlin	er		The overliner system includes a geomembrane liner (textured on all slopes), drainage geocomposite (double-sided), a GCL, and 2-foot-thick protective cover layer. Similar to the final				
Material S	Strength Paran	neters	Interface Strengt	h Parameters	cover system discussed above, the overliner system is modeled as a single layer for the global stability analysis (i.e., 2-ft protective cover was not considered separately). In addition, both a translational (using Simplified Jambu and Rankine Blocks) and an infinite stability analysis were performed to establish the minimum interface strength requirements for each				
Cohesion (lb/ft²)	Friction Angle (degrees)	Unit Weight (lb/ft³)	Adhesion (lb/ft²)	Friction Angle (degrees)	layer of the overliner system. For the rotational global stability analysis, the overliner system is modeled as a single layer and the strength parameters represent the protective cover layer (for this analysis the				
100	16	120	100	18	material strength parameters are used). The two geosynthetic layers are not included in the global analysis because they provide a negligible contribution to the forces the resisting movement. The strength values selected for the overliner system represent strength values typically used in the industry for liner systems (see liner system discubled). The unit weight of the overliner system is consistent with that selected for the liner system and is based on experience with liner system construction. The global standards is included in Appendix IIIE-A-3 (interim and final landfill conditions).				
				The interface slope stability analysis, which is performed using an infinite slope stability analysis procedure by Duncan, Buchianani, and De Wet for the overliner system, was developed to show that overliner components that are placed on top of each other, such as the geomembrane and geocomposite, will not experience sliding failure due to the lack of strength between these components. The interface strength parameters were developed using materials from Geosynthetic Research Institute (GRI) publications (e.g., "Direct Shear Database of Geosynthetic-to-Geosynthetic and Geosynthetic-to-Soil Interfaces" by George R. Koerner, GRI, Folsom, PA, June 14, 2005). Although the strength parameters (i.e., adhesion and interface friction) used for the application were selected based on published data, it should be noted that these strength parameters will also be tested and verified at the time of each overliner construction event to ensure that the as-built strength parameters meet or exceed the strength parameters used for the design (refer to Appendix IIID).					
					The translational slope stability analysis was performed using Simplified Janbu Method using Rankine Blocks. This analysis is similar to the interface slope stability analysis discussed above. The purpose of this analysis is to test the critical interfaces under a variety of loading conditions (refer to Appendix IIIE-A-2 for more information – i.e., the loading conditions reflect different landfill configurations). SLIDE2 is also used for this analysis. However, for the translational analysis the overliner system strength parameters are modified to reflect the strength parameters (adhesion and friction angle) for the interfaces with the lowest strength parameters. As noted above, these strength parameters will also be tested and verified at the time of each overliner construction event to ensure that the as-built strength parameters meet or exceed the strength parameters used for the design.				

Table 5-1 (Continued) Summary of Material Weight and Strength Parameters Used in the Slope Stability Analysis

Strength Parameters					15		Comments			
	Solid Waste						See comments listed under Solid Waste above.			
Materia	l Strengt	h Parameters		Interface	Strength	Parameters				
Cohesion (lb/ft²)		Friction Angle (degrees)	Unit Weight (lb/ft³)	Adhesio (lb/ft²)		Friction Angle (degrees)				
For ϕ_p < 625 psf For ϕ_p > 625 psf		0	65	Interface strength parameters are not applicable to the solid waste layer because the interface between the waste and final cover and overliner systems is						
023 psi				not a critical in	terface.					
	1.04		Liner Syste		- 20 80 20 11	-	The liner system includes a 2-foot-thick compacted clay layer, 60-mil geomembrane (smooth or textured geomembrane on the floor of the landfill and textured on the 3H:1V sideslopes), drainage geocomposite (single-sided on floor grades and double-sided on 3H:1V sideslopes), and a 2-foot-thick protective			
wateria	ı Strengt	h Parameters Friction	Unit			Parameters Friction	cover soil layer. This system is modeled as two layers for the global stability analysis. In addition, both a translational and an infinite stability analysis were performed to establish the minimum interface strength requirements for each layer of the liner system. The minimum interface strength requirements are			
Cohesion (lb/ft²)		Angle (degrees)	Weight (lb/ft³)	Adhesio (lb/ft²)		Angle (degrees)	specified in Appendix IIID.			
Protective Cover Effective Stress Total Stress Liner System Effective Stress Total Stress	100 1,000 100 1,000	16 0 16 0	120	Floor Grades 3H:1V Sideslope and Floor Grades	100	16	For the rotational global stability analysis, the liner system is modeled as two layers: the compacted clay liner and the soil protective cover layer. The two geosynthetic layers are not included in the global analysis because they provide a negligible contribution to the forces that are resisting movement. The strength values selected for the liner system represent strength values typically used in the industry and these same strength values have been used in various permit applications approved by TCEQ. Duncan and Wright (2005) provides a comprehensive discussion regarding strength parameters for a liner system. In Chapter 5 – Shear Strengths of Soil and Municipal Solid Waste, a significant amount of data are presented and evaluated for compacted clay liners. The results indicate that the lowest cohesion value for compacted cohesive soils is 9 kPa (187 lb/ft²) and the lowest reported friction angle value is 19 degrees. Therefore, selected values of 100 lb/ft² for cohesion and 16 degrees of friction angle conservatively represent the liner system. Soil properties used in the slope stability analysis are subject to verification at the time of each liner construction. Section 2.4.3 in Appendix IIID – LQCP includes the material strength tests required for soil used for liner construction. Protective cover and compacted clay liner soil unit weight values are based on experience with liner system construction. The global stability analysis is included in Appendices IIIE-A-2 and IIIE-A-3. The interface slope stability analysis, which is performed using an infinite slope stability analysis procedure by Duncan, Buchianani, and De Wet for the liner system, was developed to show that certain landfill components that are placed on top of each other, such as a geomembrane and compacted clay layer will not experience sliding failure due to the lack of strength between these components. The interface strength values presented in this table represent compacted clay liner interface strength value is obtained from the documen			
							The translational slope stability analysis was performed using simplified Janbu Method using the Rankine Blocks. This analysis is similar to the interface slope stability analysis discussed above. The purpose of this analysis is to test the critical interfaces under a variety of loading conditions (refer to Appendices IIIE-A-2 and IIIE-A-3 for more information – i.e., the loading conditions reflect different landfill configurations). SLIDE2 is also used for this analysis. However, for the translational analysis, the liner system strength parameters are modified to reflect the interface strength parameters. The translational stability analysis uses modified liner system strength parameters to reflect the interface strength parameters. As noted above, these strength parameters will also be tested and verified at the time of each liner construction event to ensure that the as-built strength parameters meet or exceed the strength parameters used for the design.			

¹The overliner was modeled with clay/textured geomembrane interface for sideslope and top deck areas.

Table 5-1 (Continued) Summary of Material Weight and Strength Parameters Used in the Slope Stability Analysis

		Strength	Parameters		Comments
	St	ratum A – Up _l	per Alluvium Soils	5	Refer to Section 3.3.1 of this appendix for description.
Materia	l Strength Parame	eters	Interfac	e Strength Parameters	
Cohesion (lb/ft²)	Friction Angle (degrees)	Unit Weight (lb/ft³)	Adhesion (lb/ft²)	Friction Angle (degrees)	
Effective 300 Total 3500	Effective 25 Total 0	12.5 130 (SAT)	applicable to the interface betwee	ngth parameters are not Upper Sand layer because the n the waste and final cover and s is not a critical interface.	
	Stra	tum B – Uppe	r Transmissive Zo	ne	Refer to Section 3.3.2 of this appendix for description.
Materia	l Strength Parame	eters	Interfac	e Strength Parameters	
Cohesion (lb/ft²)	Friction Angle (degrees)	Unit Weight (lb/ft³)	Adhesion (lb/ft²)	Friction Angle (degrees)	
Effective 600 Total 3500	Effective 22 Total 0	125 130 (SAT)	applicable to the the interface bet	h parameters are not Bounding Shale layer because ween the waste and final cover stems is not a critical interface.	
		Stratum C – W	/eathered Shale		Refer to Section 3.3.3 of this appendix for description.
Materia	l Strength Param	neters	Interfac	e Strength Parameters	
Cohesion Friction Angle (Ib/ft²) (Ib/ft³) Adhesion Friction Angle (degrees)		Angle			
Effective 2000 Total 4000	Effective 40 Total 0	125 140 (SAT)	applicable to the the interface bet	h parameters are not Bounding Shale layer because ween the waste and final cover stems is not a critical interface.	
	S	tratum D – Tr	ansmissive Zone		Refer to Section 3.3.4 of this appendix for description.
Material Strength Parameters Interface Strength Parameters				e Strength Parameters	
Cohesion (lb/ft²)	Friction Angle (degrees)	Unit Weight (lb/ft³)	Adhesion (lb/ft²)	Friction Angle (degrees)	
Effective 2000 Total 6000	Effective 40 Total 0	135 140 (SAT)	applicable to the the interface bet	th parameters are not Bounding Shale layer because ween the waste and final cover stems is not a critical interface.	

¹Liners on the sideslopes and floor grades are listed separately due to different strength characteristics for clay/smooth geomembrane and clay/textured geomembrane interfaces. The overliner was modeled with clay/textured geomembrane interface for sideslope and top deck areas.

Table 5-1 (Continued) Summary of Material Weight and Strength Parameters Used in the Slope Stability Analysis

		Strength	Parameters		Comments			
	S	tratum E – Un	weathered Shale		Refer to Section 3.3.5 of this appendix for description.			
Materia	al Strength Paran	neters	Interface S	trength Parameters				
Cohesion (lb/ft²)	Friction Angle (degrees)	Unit Weight (lb/ft³)	Adhesion (lb/ft²)	Friction Angle (degrees)				
Effective 1000 Total 4100	Effective 38.6 Total 0	135 140 (SAT)	the interface between	arameters are not ounding Shale layer because en the waste and final cover ms is not a critical interface.				

¹Liners on the sideslopes and floor grades are listed separately due to different strength characteristics for clay/smooth geomembrane and clay/textured geomembrane interfaces.

5.5 Results of Stability Analysis

5.5.1 Stability Analysis Using SLIDE2

The results of the stability analyses using SLIDE2 computer program indicate that the proposed excavation, liner, interim, overliner, and final configuration slopes are stable under the conditions analyzed. Table 5-2 summarizes the results of the stability analyses for the landfill slopes and compares the calculated factor of safety to the recommended minimum factor of safety. The recommended minimum factors of safety for the conditions analyzed were determined using recommendations from the Corps of Engineers "Design and Construction of Levees" manual (EM 1110-2-1913) and the EPA's "Technical Guidance Manual for Design of Solid Waste Disposal Facilities," as 1.3 for short-term slope stability (excavation slopes) and 1.5 for long-term slope stability (interim and final cover slopes).

Table 5-2
Summary of Slope Stability Analyses
for the Excavation Configuration

		Minimum Safety Ge	Factor of		
Analyzed Section-Run	Failure Type	Effective Stress	Total Stress	Safety Acceptable	
		1.5	1.3		
Excavation Slope A-1 (Exterior)	Bishop-Circular	1.74	3.33	YES	
Excavation Slope A-1 (Interior)	Bishop-Circular	1.65	3.30	YES	

¹ Recommended Minimum Factor of Safety for long-term stability analysis using effective stress is 1.5 and short-term stability analysis using total stress is 1.3.

Table 5-3
Summary of Slope Stability Analysis for
Overliner Slopes

	Method of	Minim of Ger	Factor of Safety Acceptable		
Slope Designation	Analysis	Effective Stress 1.5	Total Stress 1.3	Effective	Total
Overliner Fill Slope B-1	Bishop-Circular	2.22	2.36	YES	YES
Overliner Fill Slope B-2	Rankine-Block	1.88 (peak) ²	1.43 (residual) ^{3,4}	YES	YES
Overliner Slope C-1	Bishop-Circular	2.59	2.25	YES	YES
Overliner Slope C-2	Rankine-Block	1.97	1.54	YES	YES

- ¹ Long-term factor of safety for temporary slopes is 1.5.
- Peak stress for Rankine-Block.
- 3 Residual stress for Rankine-Block.
- ⁴ An acceptable Factor of Safety for residual stress is 1.0.

Table 5-4
Summary of Slope Stability Analysis
for the Interim and Final Landfill Configurations

	Method of	Minimum Gen	Acceptable Factor		
Slope Designation	Analysis	Effective	Total Stress	of Safety	
		Stress	Total Stress	Effective	Total
Interim Slope D-1	Bishop-Circular	1.94	1.94	YES	YES
Interim Slope D-2	Rankine-Block	1.61 (peak)	1.29 (residual) ^{2, 3}	YES	YES
Final Cover Slope E-1	Bishop-Circular	2.67	2.53	YES	YES
Final Cover Slope E-2	Rankine-Block	2.07 (peak) ²	1.62 (residual) ^{2,3}	YES	YES
Final Cover Slope F-1	Bishop-Circular	2.97	2.97	YES	YES
Final Cover Slope F-2	Rankine-Block	3.70 (peak) ²	2.92 (residual) ^{2, 3}	YES	YES

Recommended Minimum Factor of Safety for long-term stability analysis using effective stress is 1.5 and short-term stability analysis using total stress is 1.3.

Computer-generated slope stability analysis output is included in Appendix IIIE-A. The minimum calculated factor of safety for the closed condition is 1.88, which is greater than the recommended minimum factor of safety of 1.5 for long-term slope stability.

Recommended Minimum Factor of Safety for stability analysis using peak stress is 1.5 and residual stress is 1.0.

³ Residual stress for Rankine-Block.

5.5.2 Infinite Slope Stability Analysis

Infinite slope stability analysis for the overliner, bottom liner, and final cover systems has been included in this design in addition to the block method analysis discussed in the previous section. The infinite stability analyses address anchor trench design, stability of cover and drainage material on anchored geosynthetics, and shear forces within the liner system. The infinite final cover slope stability analysis addresses the shear forces within the final cover system. These calculations are presented in Appendix IIIE-A-4. As demonstrated in Appendix IIIE-A-4, the liner, overliner and cover systems are structurally stable using the strength parameters shown, which will be verified during each construction event. Prior to each construction event for liner, overliner, and final cover, the POR will perform interface strength testing using the actual material that will be used for each construction event to demonstrate the interfaces comply with the minimum values set forth in the Interface Shear Strength Conformance Test Requirement presented in Appendix IIIE-A-5.

A separate analysis has been prepared for the GCL final cover alternative and is presented in Appendix IIIJ-B – GCL Alternative Final Cover Demonstration. The demonstration presents the alternative of substituting a GCL for the 18-inch-thick compacted clay infiltration layer.

5.5.3 Overliner and Bottom Liner Interface Shear Strength Conformance Testing

Prior to each construction event, interface shear strength conformance testing will be required for the specific geosynthetic and soil liner components to be incorporated into the project. The required interface shear strength conformance testing requirements have been established for the project based on stability analyses performed for the expansion. The description of the interface shear strength conformance testing requirements and supporting stability analyses is presented in Appendix IIIE-A-5. As discussed in the appendix, the conformance testing requirements are applicable to both laboratory stack testing and single interface testing results and will be incorporated into the Geosynthetic Liner Evaluation Report (GLER) prepared for the respective construction event.

SETTLEMENT, STRAIN, AND HEAVE ANALYSIS

6.1 General

The purpose of the settlement and heave analysis is to demonstrate that the overliner, bottom liner, and final cover systems will not be adversely impacted by foundation settlement and settlement of waste below the overliner. The settlement analysis also addresses the settlement of the final cover system to demonstrate that the proposed final cover is designed to withstand the potential strain induced by waste settlement.

Settlement of the liner system will occur due to consolidation of the foundation materials from the weight of the landfill components (i.e., protective cover, solid waste and daily cover, and final cover systems). Laboratory consolidation tests indicate that the foundation soils (primarily shale) have low compressibility. Settlement of the overliner system occurs due to consolidation of the waste below the overliner and foundation soils as a result of the weight of the landfill components above the overliner. Settlement of the final cover system will occur due to consolidation of foundation soils and consolidation within the solid waste. Total consolidation of final cover consists of primary and secondary consolidation of deposited waste. Appendix IIIE-B includes details for the foundation heave and settlement as well as overliner and final cover settlement analyses.

Foundation/Bottom Liner Settlement and Strain 6.2

The Foundation/Bottom Liner Settlement Analysis is presented in Appendix IIIE-B-1. Foundation settlement potential has been assessed using estimates of consolidation properties for Stratum II, the primary formation underlying the constructed cells.

Settlement calculations were performed using SETTLE3, a computer-based model developed by RocScience, Inc. (2021). Input parameters include surfaces representing the subsurface strata, vertical loads representing the waste placed in the cell, and the settlement characteristics of the subsurface strata (from laboratory consolidation testing). The SETTLE3 model creates an isopach of the settlement of the bottom liner system, which then can be used to calculate strain within the bottom liner components.

The analysis is performed by creating a horizontal plane within the SETTLE3 program, with subsurface data input from available boring logs that has been

normalized to the excavation grades (i.e., grades below the bottom liner system) designed for the landfill. Thus, the horizontal plane within the model represents the soil conditions beneath the excavation grade contours. Vertical fill loads are then calculated by subtracting the final landfill elevation from the excavation grades, and then multiplying the fill height by the unit weight assumed at each fill point. Unit weight values are adjusted based on the total waste thickness, and assume that deeper waste fill heights result in higher waste densities and associated pressures.

For the analysis, a conservative approach of assuming pre-consolidation pressures as equal to the overburden stress was used. This is a conservative approach, in that it results in greater settlement at each analysis point when compared to analyses performed using an assumed or calculated higher pre-consolidation stress value. The results of the analyses are presented in Appendix IIIE-B. As demonstrated in Appendix IIIE-B, even with this more conservative approach the settlement at the site is negligible and will not adversely affect the performance of the leachate collection systems and will not result in detrimental strain on the liner system components.

6.3 Final Cover Settlement and Strain

The Final Cover Settlement Analysis is presented in Appendix IIIE-B-2. Landfill final cover settlement occurs due to settlement of foundation soils and the settlement of waste materials. In general, foundation settlement is insignificant in comparison to the settlement of deposited waste. Waste settlement consists of primary and secondary settlement.

Settlement of solid waste generally begins rapidly as the waste load is placed and continues to occur for long periods of time after the initial placement. Initially, municipal solid waste will undergo primary settlement due to its own weight, final cover, equipment, etc. Primary settlement occurs quickly, generally within the first month after loading. Therefore, the weight of the final cover system is the only remaining factor that contributes to primary consolidation. By the time the construction of the final cover is complete, settlement of the waste due to the weight of the final cover will be complete.

Secondary settlement continues at substantial rates for periods of time well beyond primary settlement. It is a combination of mechanical secondary compression, physico-chemical reaction, and bio-chemical decay.

A strain analysis has been incorporated into the final cover settlement analysis presented in Appendix IIIE-B-2. The purpose of the settlement and strain analysis is to demonstrate that the final cover system will be stable as designed and maintain positive drainage. If it is considered that the waste settlement is uniform, then the sideslopes are expected to maintain positive drainage. Based on the estimates of settlement for the maximum waste thickness (where maximum waste settlement is expected to occur on the top deck of the landfill) and minimum waste thickness

(where minimum settlement is expected to occur on the top deck of the landfill), the landfill final cover will be subject to a (compressive) strain of 0.27 percent. That is less than the allowable strain for the final cover soil infiltration layer. A strain demonstration in Appendix IIIE-B-2 shows that the top deck areas of the final cover will be stable and maintain positive drainage after settlement.

6.4 Overliner Settlement

The Overliner Settlement Analysis is presented in Appendix IIIE-B-3. Overliner settlement occurs as foundation materials and underlying in-place solid waste consolidate due to the additional weight of the landfill. In general, foundation settlement is insignificant in comparison to the settlement of underlying in-place solid waste, and therefore the analysis was limited to settlement occurring within the waste. Waste settlement consists of primary and secondary settlement.

Settlement of solid waste generally begins rapidly as the waste load is placed and continues to occur for long periods of time after the initial placement. Initially, municipal solid waste will undergo primary settlement due to its own weight, final cover, equipment, etc. Primary settlement occurs quickly, generally within the first month after loading. Therefore, the weight of the final cover system is the only remaining factor that contributes to primary consolidation. By the time the construction of the final cover is complete, settlement of the waste due to the weight of the final cover will be complete. Secondary settlement continues at substantial rates for periods of time well beyond primary settlement. It is a combination of mechanical secondary compression, physico-chemical reaction, and biochemical decay. Settlement analysis for the overliner system is presented in Appendix IIIE-B-3.

The purpose of the overliner system settlement analysis is to (1) show that positive drainage is maintained for the overliner system consistent with the demonstration included in Appendix IIIC and (2) to verify that the strain induced on the overliner system components due to differential settlement is within acceptable limits. The post-settlement slopes of the overliner system were used to demonstrate that the overliner leachate collection system will maintain positive drainage slopes and the leachate will be conveyed within the thickness of the leachate collection layer.

A strain analysis has been incorporated into the overliner settlement analysis presented in Appendix IIIE-B-3. The purpose of the strain analysis is that the maximum calculated strain is significantly lower than the allowable strain for the overliner system components. The areas of the overliner and overliner leachate drain pipes will be stable and maintain positive drainage after settlement. Based on the foregoing discussion, it is concluded that settlement will not adversely affect the overliner system, and the overliner system will perform as designed.

6.5 Foundation Heave

The foundation heave analysis is presented in Appendix IIIE-B-4. Potential heave (rebound) due to excavation of overburden above the excavation base was estimated using the standard consolidation theory for soils and the recompression index obtained from the rebound portion of the consolidation tests. In order to estimate potential for heave, the load is decreased, instead of increasing the load on the soils, to correspond with the projected weight of excavated soil. Using a maximum excavation depth of approximately 18 feet (existing ground elevation minus bottom of excavation at a given location), a heave of approximately 20 inches was calculated. The depth of floor grade excavation for each individual sector (liner area draining to an LCS sump) is generally uniform (i.e., depth of soil to be removed from the floor grades does not change drastically within a given sector). Where the excavation depth is less, heave will also be less and therefore negligible. These calculations are included in Appendix IIIE-B-4. Heave will occur soon after excavation (before and during liner construction) and will not adversely affect the performance of the liner system.

7 CONCLUSIONS AND RECOMMENDATIONS

This geotechnical analysis has been developed using (1) various geotechnical data obtained from field and laboratory testing performed on the soil samples recovered at the site; (2) general soil stratigraphy of the project area; and (3) known geotechnical characteristics of the founding geological formation, of solid waste, of geosynthetic materials commonly used for landfill development, and of soils used for various components of landfills. It is concluded, based on this geotechnical analysis, that the proposed landfill and its components (e.g., leachate collection system, liner systems, cover systems, excavation and interim fill slopes) will be geotechnically stable and will function as designed. The following summarizes various findings of the geotechnical analysis.

- Geotechnical engineering tests were performed in accordance with industry practice and recognized procedures (e.g., ASTM standards).
- Stability of the proposed landfill excavation slopes, constructed liner slopes, interim fill slopes, overliner slopes, and the final cover are acceptable as designed (see Appendix IIIE-A).
- Stability of the liner, overliner, and final cover system components is acceptable as designed (see Appendix IIIE-A).
- Foundation settlement after filling is expected to be negligible and within the strain limits of the liner system (refer to Appendix IIIE-B).
- Settlement of the final cover system will not adversely affect the final cover system, and the final cover system will function as designed (refer to Appendix IIIE-B).
- Settlement of the overliner system will not adversely affect the overliner system, and the overliner system will perform as designed (i.e., maintain positive drainage to the LCS sumps).
- Foundation heave during excavation is expected to be negligible and is within the strain limits of the liner system (refer to Appendix IIIE-B-4). Settlement of the liner system will not adversely affect the liner system, and the liner system will perform as designed (i.e., maintain positive drainage to the LCS sumps).

APPENDIX IIIE-A SLOPE STABILITY ANALYSIS

CONTENTS

INTRODUCTION

APPENDIX IIIE-A-1

Landfill Excavation Stability Analysis

APPENDIX IIIE-A-2

Overliner Stability Analysis

APPENDIX IIIE-A-3

Interim and Final Closure Conditions Stability Analysis

APPENDIX IIIE-A-4

Infinite Slope Stability Analysis

APPENDIX IIIE-A-5

Interface Shear Strength Conformance Testing Requirements

IIIE-A-1

INTRODUCTION

This appendix includes the slope stability analysis for the landfill slopes during various phases of the site development and the final landfill configuration. General slope stability for the excavation and interim and closed conditions were evaluated by using the SLIDE2 computer program, as developed by RocScience, Inc. (2020). The Simplified Bishop method was used for circular failure surfaces, and the Simplified Janbu method using Rankine Block was used for the translational (block) slope stability analysis. Infinite slope stability has also been analyzed for the bottom liner, overliner, and final cover system. Soil profiles analyzed for each configuration for the slope stability analysis are provided in the sub-appendices, along with SLIDE2 computer output files as applicable. The stability analysis for the site is provided in the following four appendices.

- Appendix IIIE-A-1 includes the slope stability analysis for the excavated landfill condition.
- Appendix IIIE-A-2 includes the slope stability analysis for the overliner condition.
- Appendix IIIE-A-3 includes the slope stability analysis of the interim and final closure configuration.
- Appendix IIIE-A-4 includes the infinite slope stability evaluation.
- Appendix IIIE-A-5 includes the interface shear strength conformance testing requirements (for use during future cell and overliner and bottom liner designs and construction).

Prep By: MB/DEP Date: 1/26/2022

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-A SLOPE STABILITY ANALYSIS

Chkd By: DEP Date: 1/26/2022

Required:

- A. Evaluate the slope stability of the proposed landfill configuration including excavation grades, overliner slopes, interim fill slopes, and final closure condition slopes.
- B. Evaluate the veneer stability of the bottom liner, overliner and final cover systems. Analysis is performed by the Infinite Slope Analysis Method.
- C. After completing the analysis of the selected sections above using the weakest liner interface for each condition, the worst case section (i.e., the section with the lowest resulting factors of safety) was then re-analyzed to determine the minimum required strength parameters to meet the minimum required factors of safety (for block failure along the liner system interfaces). These strength values will then be used in material specification and conformance testing during future bottom liner and overliner construction projects. For this project, Section B-B was selected as the worst case condition. The results of the conformance testing analysis and the Geosynthetic Conformance Testing Requirements are presented in Appendix IIIE-A-5.

For this slope stability analysis, the analysis description, input parameters, analysis section plans, and the sections analyzed (with analysis results) are presented in Appendix IIIE-A. SLIDE2 computer model output files are presented in Appedices IIIE-A-1 (Excavation Grades), IIIE-A-2 (Overliner Conditions) and IIIE-A-3 (Interim and Final Closure Conditions). Infinite slope stability analyses are presented in Appendix IIIE-A-4.

Given:

- 1. Site plans showing the sections analyzed for this analysis are presented on Sheets IIIE-A-7 and IIIE-A-8.
- 2. Modeling parameters were derived from field and laboratory testing, and are summarized in Table IIIE-A-1, below. The results of field and laboratory testing are discussed in Appendix IIIE. Assumptions regarding waste density are discussed in Appendix IIIE.
- 3. The proposed bottom liner system for the landfill will consist of (from the bottom up) 2-foot-thick compacted clay liner (k < 1x10⁻⁷ cm/s), 60-mil HDPE geomembrane, geotextile-geonet composite drainage layer, and 2-foot-thick soil protective cover. A GCL may be substituted for the clay liner component. Infinite stability analysis results for the clay liner option of the bottom liner system are presented in Appendix IIIE-A-4.
- 4. The proposed overliner system for the landfill will consist of (from the bottom up) a bedding layer, GCL, 40-mil LLDPE geomembrane, geotextile-geonet drainage layer, and 2-foot-thick soil protective cover. Infinite stability analysis results for the overliner system are presented in Appendix IIIE-A-4.
- 5. The proposed final cover system for the landfill will consist of (from the bottom up) an infiltration layer, 40-mil LLDPE geomembrane, geotextile-geonet drainage layer, and 1-foot-thick erosion layer. The infiltration layer may be comprised of 18-inch thick clay or GCL. Infinite stability analysis results for the final cover system are presented in Appendix IIIE-A-4.
- The bottom liner and overliner systems were analyzed for stability as a single (thickened) layer with assigned strength parameters of the weakest component of the proposed composite liner system.

Prep By: MB/DEP Date: 1/26/2022

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-A SLOPE STABILITY ANALYSIS

Chkd By: DEP Date: 1/26/2022

Method:

- A. Evaluate the slope stability of the proposed landfill configuration including excavation grades, overliner slopes, interim fill slopes, and final landfill slopes.
- 1. Determine critical excavation, overliner, interim and final landfill configuration slopes in the proposed design.
- 2. Select a soil profile for each critical section using available boring logs and geologic cross sections near each section. Information for this effort was derived from Appendix IIIG-Geology Report.
- 3. Select material properties using unit weights and strength parameters for the proposed sections (See Table IIIE-A-1, below).
- 4. Perform slope stability analyses:
 - a. Analyze the excavation and exterior liner slopes using SLIDE2 computer model and the simplified Bishop method of circular failure surfaces. Analyses were performed for both effective (drained) stress conditions and total (undrained) stress conditions. The effective stress conditions represent long-term conditions, and the total stress conditions represent short-term conditions. Analysis section plans and analysis sections are presented as Sheets IIIE-A-7 through 14, and the SLIDE2 output files and results are presented in Appendix IIIE-A-1.
 - b. Analyze the <u>landfill overliner slopes</u> using SLIDE2 computer model and the simplified Bishop method of circular failure surfaces and the Bishops method for block failure surfaces at the overliner interface. Circular failure plane analyses were performed for total (undrained) stress and effective (drained, or long term) stress conditions. The effective stress conditions represent long-term conditions, and the total stress conditions represent short-term conditions. Block failure along the overliner interfaces were performed for peak and residual (or large deformation) conditions. Analysis section plans and analysis sections are presented as Sheets IIIE-A-7 through IIIE-A-14, and the SLIDE2 output files and results are presented in Appendix IIIE-A-2.
 - c. Analyze the <u>interim and final closure condition slopes</u> using SLIDE2 computer model and the simplified Bishop method of circular failure surfaces and the Bishops method for block failure surfaces at the bottom liner interface. Circular failure plane analyses were performed for total (undrained) stress and effective (drained, or long term) stress conditions. The effective stress conditions represent long-term conditions, and the total stress conditions represent short-term conditions. Block failure along the overliner interfaces were performed for peak and residual (or large deformation) conditions. Analysis section plans and analysis sections are presented as Sheets IIIE-A-7 through IIIE-A-14, and the SLIDE2 output files and results are presented in Appendix IIIE-A-3.

Prep By: MB/DEP Date: 1/26/2022

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-A SLOPE STABILITY ANALYSIS

Chkd By: DEP Date: 1/26/2022

- 5. Using the worst case section analyzed for the stability analysis above (Section B-B), develop the minimum strength parameters required to obtain the minimum required stability factors of safety (for peak and residual strength of block failures along the geosynthetic liner interfaces). This information will be used during future conformance testing during landfill cell design and construction to qualify selected geosynthetic materials. The Conformance Testing Requirements worksheet is provided in Appendix IIIE-A-5.
- 6. Evaluate the stability of the proposed bottom and overliner systems and the final cover system using infinite slope stability analysis. The results of the infinite slope stability analyses are presented in Appendix IIIE-A-4.
 - a. Verify that the tensile stress in the liner system will be less than the yield stress by using Koerner's method (reference 4) for determination of shear stress in liner systems considering cohesion/adhesion forces.
 - b. Provide anchor trench design considering pullout of the geomembrane (incorporated into the bottom liner infinite slope stability analysis).
 - c. Use Duncan and Buchignani's method for infinite stability analyses to evaluate the internal stability of the liner systems.

- References: 1. Duncan, J.M. and Buchignani, A.L., An Engineering Manual for Slope Stability Studies, Department of Civil Engineering-University of California-Berkeley, 1975.
 - 2. TRI, Interface Friction/Direct Shear Testing & Slope Stability Issues. Short Course, November 12-13, 1998. Austin, Texas.
 - 3. US Army Corps of Engineers, Slope Stability, Engineering and Design Manual, EM 1110-2-1902, October 31, 2003.
 - 4. Koerner, Robert M., Designing with Geosynthetics, 5th Ed., Prentice-Hall, Inc., 2005.
 - 5. SLIDE 2 (computer program for slope stability analyses), Rocscience Inc.
 - 6. Das, Braja M., Principles of Geotechnical Engineering, 5th Ed., Brooks/Cole, 2002.
 - 7. Gilbert, Robert B, Peak Versus Residual Strength for Waste Containment Systems, Proceedings the 15th GRI Conference on Hot Topics in Geosynthetics-II (Peak/Residual; RECMs; Installation; Concerns)
 - 8. Cetco Lining Technologies, Laboratory Data Reports, Bentomat Direct Shear Testing Summary, Summary of Bentomat Direct Shear Test Data Internal, Revised 08/02
 - 9. Bouzza, A., Zornberg, J.G., and Adam, D. Geosynthetics in Waste Containment Facilities: Recent Advances, 2002.

Solution:

- A. Slope stability analyses of the proposed slopes.
- 1. The locations of the critical sections selected for the stability analysis for the proposed slopes are shown on Sheets IIIE-A-7 and IIIE-A-8. Sections analyzed are also shown with the most critical failure surfaces for each of the analyses performed and the resulting factors of safety.

Prep By: MB/DEP Date: 1/26/2022

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-A SLOPE STABILITY ANALYSIS

Chkd By: DEP Date: 1/26/2022

- 2. The soil profile used for each analysis was based on boring log data from previous site investigations from the undeveloped area of the site and the geologic cross sections (see Appendix IIIG-Geology Report). Generalized soil profiles for the site also are shown in Appendix IIIG-Geology Report of this application.
- 3. A summary table (IIIE-A-1) presents the assumed material weight and strength properties for the analyses performed for this appendix.
- 4. The material weight and strength parameter determination for each material type was based on laboratory testing results (Atterberg limits, natural moisture content, unit weight, percent finer than #200 sieve, and Standard Proctor), industry references and engineering judgment based on previous experience with similar materials. Laboratory testing results from previous investigations are included in Appendix IIIE-C.
- 5. The output from the slope stability analyses are presented in table IIIE-A-2, below.
- B. Infinite slope stability of the proposed bottom liner, overliner, and final cover systems.
- 1. The anchor trench design for bottom liner installations is provided on Sheets IIIE-A-4-7 and 8.
- 2. Infinite slope stability analysis of the bottom liner system is provided on Sheets IIIE-A-4-9 through 12.
- 3. Infinite slope stability analysis of the overliner system is provided on Sheets IIIE-A-13 through 16.
- 4. Infinite slope stability analysis of the final cover system is provided on Sheets IIIE-A-17 through 20.

Conclusion: Based on the slope stability analyses provided in this Appendix, the proposed critical slopes for the excavation, overliner, and final cover conditions have adquate factors of safety to be considered stable. In addition, the infinite stability analysis demonstrates that the proposed liner system has adequate factors of safety to be considered stable. Lastly, this appendix presents the minimum strength parameters to be used during future cell and closure designs in selecting the appropriate liner and cover system components and geosynthetics.

CITY OF ARLINGTON LANDFILL 0023-404-11-102

Chkd By: DEP Date: 1/18/2022

APPENDIX IIIE-A

SLOPE STABILITY ANALYSIS PARAMETER SELECTION

Table IIIE-A-1. Summary of Material Properties From SLIDE2 Slope Stability Analyses

			Effect	Effective Stress	T_0	Total Stress
Soil Description	Moist Unit Weight (pcf)	Saturated Unit Weight (pcf)	Cohesion (psf)	Cohesion (psf) Angle of Internal Friction (degrees)	Cohesion (psf)	Angle of Internal Friction (degrees)
Final Cover Material	116	120	100	16	100	16
Waste (Overburden: 0-625 psf)	65	65	500	0	500	0
Waste (Overburden: > 625 psf)	65	65	0	33	0	33
Protective Cover	120	124	100	16	100	16
Clay Liner ¹	120	124	100	16	100	16
Compacted Fill	125	130	200	20	2,000	0
Sandstone	135	140	2,000	40	6,000	0
Weathered Shale	125	140	2,000	40	4,000	0
General Fill	116	120	250	30	1,000	0
A-Alluvium	125	130	300	25	3,500	0
B-Alluvium	125	130	009	22	3,500	0
71	125	071	UCS (psf) ³	GSI ⁴	mi ⁵	D^6
Onweathered Shale	133	041	50,000	85	9	1
La constitue de		The second secon				

⁽A) cohesion of 100 psf and internal friction angle of 16 degrees is used for the clay liner for Peak Stress in the Rankine Block method of the slope stability analysis. An adhesion of 80 psf and an interface friction angle of 8 degrees for the clay liner bottom slope and an adhesion of 80 psf and an interface friction angle

system.

of 8 degrees for the clay liner sideslope are used for the Residual Stress in the Rankine Block method of the slope stability analysis to represent the weakest interface of the liner

⁽²⁾Generalized Hoek-Brown model was used for Unweathered Shale layer.

⁽³⁾ Unconfined Compression Strength. (4) Geological Strength Index of Unweathered Shale layer. (5) A material constant. (6) A factor which depends upon the degree of disturbance of the rock.

CITY OF ARLINGTON LANDFILL 0023-404-11-102

Prep By: MB/DEP Date: 1/18/2022

APPENDIX IIIE-A SLOPE STABILITY ANALYSIS FACTORS OF SAFETY

Table IIIE-A-2. SLIDE2 Stability Modeling Output

			Stress Condition	ondition		
Analyzed Section-Run ⁽¹⁾	Method	Effective Stress	Total Stress	Peak Stress	Residual Stress	Factor of Safety Acceptable
Recommended Min. Factor of Safety	actor of Safety	$1.5^{(2)}$	1.5 ⁽²⁾	$1.5^{(2)}$	$1.0^{(2)}$	
Excavation Slope A-1-Exterior	Bishop-Circular	1.74	3.33	1	1	YES
Excavation Slope A-2-Interior	Bishop-Circular	1.65	3.30	1	1	YES
Overliner B-1	Bishop-Circular	2.22	2.36	1	1	YES
Overliner B-2	Rankine-Block	-	ı	1.88	1.43	YES
Overliner C-1	Bishop-Circular	2.59	2.25	1	1	YES
Overliner C-2	Rankine-Block	1	1	1.97	1.54	YES
Interim Slope D-1	Bishop-Circular	1.94	1.94	1	1	YES
Interim Slope D-2	Rankine-Block	1	1	1.61	1.29	YES
Final Cover E-1	Bishop-Circular	2.67	2.53	•	1	YES
Final Cover E-2	Rankine-Block	1	1	2.07	1.62	YES
Final Cover F-1	Bishop-Circular	2.97	2.97	I	1	YES
Final Cover F-2	Rankine-Block	ŧ	1	3.70	2.92	YES

⁽¹⁾ For overliner, interim, and final cover configurations Run 1 represents circular failure, and Run 2 represents block failure.

P:\Solid waste\Republic\Ar\imgton\Expansion 2020\Geotechnical\Slope Stability\ IIIE-A Slope Stability\ 01_18_2022

⁽²⁾ Recommended minimum factor of safety provided in Reference 3 on Sheet IIIE-A-3.

EXCAVATION SECTION A-A - EXTERIOR MINIMUM FACTOR OF SAFETY (STATIC): 1.74

EXCAVATION SECTION A-A - INTERIOR MINIMUM FACTOR OF SAFETY (STATIC): 1.65

			-				
	DRAFT			CI	TY OF ARLINGTON		
X	FOR PERMITTING PURPOSES ONL	Y		OI.	AND	MAJOR PI	ERMIT AMENDMENT
	ISSUED FOR CONSTRUCTION	4 4	REPL	JBLIC WAS		EXCAVATION SLO	OPE STABILITY SECTIONS
DATE:	12/2021	DRAWN BY: JDW			REVISIONS		
FILE:	0023-404-11	DESIGN BY: MB	NO. DATE DESCRIPTION			-	
CAD:	SHEET IIIE—A—9.DWG	REVIEWED BY: DEP				CITY OF ARLINGTON LANDFILL	
1	Weaver Consultants Group					TARRAN	T COUNTY, TEXAS
	TBPE REGISTRATION NO.					WWW.WCGRP.COM	SHEET IIIE-A-9

OVERLINER SECTION B-B MINIMUM FACTOR OF SAFETY (STATIC): 2.22

OVERLINER SECTION B-B MINIMUM FACTOR OF SAFETY (STATIC): 1.43

DRAFT X FOR PERMITTING PURPOSES ONL ISSUED FOR CONSTRUCTION	Y	REP		PREPARED FOR TY OF ARLINGTON AND STE SERVICES OF TEXAS, LTD	MAJ OVERLINE
DATE: 12/2021 FILE: 0023-404-11 CAD: SHEET IIIE-A-10.DWG	DRAWN BY: JDW DESIGN BY: MB REVIEWED BY: DEP	NO.	DATE	REVISIONS DESCRIPTION	СІТ
Weaver Consulta TBPE REGISTRATION NO.					- WWW.WCGRP

MAJOR PERMIT AMENDMENT OVERLINER SLOPE STABILITY SECTIONS

CITY OF ARLINGTON LANDFILL TARRANT COUNTY, TEXAS

SHEET IIIE-A-10

COPYRIGHT © 2021 WEAVER CONSULTANTS GROUP. ALL RIGHTS RESERVED.

OVERLINER SECTION C-C MINIMUM FACTOR OF SAFETY (STATIC): 2.25

OVERLINER SECTION C-C
MINIMUM FACTOR OF SAFETY (STATIC): 1.54

DRAFT FOR PERMITTING PURPOSES ONLY ISSUED FOR CONSTRUCTION					PREPARED FOR IY OF ARLINGTON AND TE SERVICES OF TEXAS, LTD	MAJOR PERMIT AMENDMENT OVERLINER SLOPE STABILITY SECTIONS		
FILE: 0	12/2021 0023-404-11 HEET IIIE-A-11.DWG	DRAWN BY: JDW DESIGN BY: MB REVIEWED BY: DEP	NO.	DATE	REVISIONS DESCRIPTION	CITY OF A	ARLINGTON LANDFILL	
	Weaver Consulta	ints Groun				TARRAN	T COUNTY, TEXAS	
	TBPE REGISTRATION NO.	-				WWW.WCGRP.COM	SHEET IIIE-A-11	

INTERIM SECTION D-D MINIMUM FACTOR OF SAFETY (STATIC): 1.94

INTERIM SECTION D-D MINIMUM FACTOR OF SAFETY (STATIC): 1.29

X U	DRAFT FOR PERMITTING PURPOSES ONL' ISSUED FOR CONSTRUCTION	Y	REPI		PREPARED FOR TY OF ARLINGTON AND STE SERVICES OF TEXAS, I	LTD	INTE
DATE:	12/2021	DRAWN BY: JDW			REVISIONS		
	0023-404-11	DESIGN BY: MB	NO.	DATE	DESCRIPTION		
CAD:	SHEET IIIE—A—12.DWG	REVIEWED BY: DEP					
1	Weaver Consulta	ents Group					
	TBPE REGISTRATION NO.	-					www.we
	TOTE REGISTRATION NO.	1 0,2,					********

MAJOR PERMIT AMENDMENT INTERIM SLOPE STABILITY SECTIONS

CITY OF ARLINGTON LANDFILL TARRANT COUNTY, TEXAS

VW.WCGRP.COM

SHEET IIIE-A-12

FINAL COVER SECTION E-E MINIMUM FACTOR OF SAFETY (STATIC): 2.53

FINAL COVER SECTION E-E MINIMUM FACTOR OF SAFETY (STATIC): 1.62

TBPE REGISTRATION NO. F-3727

MAJOR PERMIT AMENDMENT FINAL CONDITIONS SLOPE STABILITY SECTIONS

CITY OF ARLINGTON LANDFILL TARRANT COUNTY, TEXAS

WWW.WCGRP.COM SHEET IIIE-A-13

COPYRIGHT © 2021 WEAVER CONSULTANTS GROUP. ALL RIGHTS RESERVED.

FINAL COVER SECTION F-F MINIMUM FACTOR OF SAFETY (STATIC): 2.97

APPENDIX IIIE-A-1

LANDFILL EXCAVATION CONFIGURATION STABILITY ANALYSIS SLIDE2 OUTPUT FILES

Includes pages IIIE-A-1-1 through IIIE-A-1-21

5-19-2022

SLOPE STABILITY SECTION A-A SLIDE2 OUTPUT RESULTS

Slide Analysis Information Effective_Circular_Section_F

Project Summary

File Name:

Slide Modeler Version:

Compute Time:

Project Title:

Date Created:

Effective_Circular_Section_F.slmd

9.018

00h:00m:00.677s

SLIDE - An Interactive Slope Stability Program

12/16/2021, 3:01:16 PM

Analysis Options

Slices Type:	Vertical
	ethods Used
CONTRACTOR	Bishop simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Materials

COMPACTED FILL

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Ru Value

WEATHERED SHALE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Hu Value

UNWEATHERED SHALE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Unconfined Compressive Strength (intact) [psf]

GSI mi

Disturbance Water Surface Hu Value

Mohr-Coulomb

Mohr-Coulomb

Generalized Hoek-Brown

Water Table

1

Global Minimums

Method: bishop simplified

FS	1.745190
Center:	68.857, 572.486
Radius:	129.226
Left Slip Surface Endpoint:	41.412, 446.208
Right Slip Surface Endpoint:	162.086, 483.000
Resisting Moment:	1.25574e+07 lb-ft
Driving Moment:	7.1954e+06 lb-ft
Total Slice Area:	1576.12 ft2
Surface Horizontal Width:	120.674 ft
Surface Average Height:	13.061 ft

Slide Analysis Information

Total_Circular_Section_F

Project Summary

File Name:

Slide Modeler Version:

Compute Time:

Project Title:

Date Created:

Total_Circular_Section_F.slmd

9.018

00h:00m:00.694s

SLIDE - An Interactive Slope Stability Program

12/16/2021, 3:01:16 PM

Analysis Options

Slices Type:	Vertical
Analysis M	ethods Used
The Autopy page (percent of the percent of the perc	Bishop simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Materials

COMPACTED FILL

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf] Friction Angle [deg] Water Surface Ru Value

WEATHERED SHALE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Hu Value

UNWEATHERED SHALE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Unconfined Compressive Strength (intact) [psf]

GSI mi

Disturbance Water Surface Hu Value

Mohr-Coulomb

Mohr-Coulomb

Water Table

1

Generalized Hoek-Brown

Water Table

1

Global Minimums

Method: bishop simplified

FS	3,335150
Center:	96.344, 563.250
Radius:	129,271
Left Slip Surface Endpoint:	41.462, 446.208
Right Slip Surface Endpoint:	197.689, 483.000
Resisting Moment:	4.47672e+07 lb-ft
Driving Moment:	1.34229e+07 lb-ft
Total Slice Area:	3888.97 ft2
Surface Horizontal Width:	156,226 ft
Surface Average Height:	24.8932 ft

Slide Analysis Information

Effective_Circular_Section_F

Project Summary

File Name:

Slide Modeler Version:

Compute Time:

Project Title:

Date Created:

Effective_Circular_Section_F.slmd

9.018

00h:00m:00.683s

SLIDE - An Interactive Slope Stability Program

12/16/2021, 3:01:16 PM

Analysis Options

Slices Type:	Vertical
Analysis M	ethods Used
	Bishop simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Materials

COMPACTED FILL

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Ru Value

WEATHERED SHALE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Hu Value

UNWEATHERED SHALE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Unconfined Compressive Strength (intact) [psf]

GSI mi

Disturbance

Water Surface

Hu Value

Mohr-Coulomb

Mohr-Coulomb

Water Table

1

Generalized Hoek-Brown

Water Table

1

FS	1.656340
Center:	311.045, 591.895
Radius:	157.906
Left Slip Surface Endpoint:	196,693, 483,000
Right Slip Surface Endpoint:	343.154, 437.287
Resisting Moment:	2.09711e+07 lb-ft
Driving Moment:	1.26611e+07 lb-ft
Total Slice Area:	2246 ft2
Surface Horizontal Width:	146.461 ft
Surface Average Height:	15.3351 ft

Slide Analysis Information

Total_Circular_Section_F

Project Summary

File Name:

Slide Modeler Version:

Compute Time:

Project Title:

Date Created:

Total_Circular_Section_F.slmd

9.018

00h:00m:00.725s

SLIDE - An Interactive Slope Stability Program

Analysis Options

Slices Type:	Vertical
Analysis M	ethods Used
So Standard Confedence	Bishop simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Materials

COMPACTED FILL

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Ru Value

WEATHERED SHALE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Hu Value

UNWEATHERED SHALE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Unconfined Compressive Strength (intact) [psf]

GSI mi

Disturbance Water Surface Hu Value

Mohr-Coulomb

Mohr-Coulomb

Water Table

1

Generalized Hoek-Brown

Water Table

1

FS	3.300790
Center:	270.486, 560.841
Radius:	126.858
Left Slip Surface Endpoint:	170.317, 483.000
Right Slip Surface Endpoint:	321.176, 444.550
Resisting Moment:	4.25237e+07 lb-ft
Driving Moment:	1.28829e+07 lb-ft
Total Slice Area:	3495.97 ft2
Surface Horizontal Width:	150.858 ft
Surface Average Height:	23.1739 ft

APPENDIX IIIE-A-2

OVERLINER SYSTEM LANDFILL CONFIGURATION STABILITY ANALYSIS SLIDE2 OUTPUT FILES

Includes pages IIIE-A-2-1 through IIIE-A-2-50

DAVID E. POE

81734

C. CENSED ON

S. 19 - 2022

SLOPE STABILITY SECTION B-B – OVERLINER CONDITIONS SLIDE2 OUTPUT RESULTS

Slide Analysis Information Effective_Circular

Project Summary

File Name:

Slide Modeler Version:

Compute Time:

Project Title:

Date Created:

Effective_Circular.slmd

9.018

00h:00m:01.286s

SLIDE - An Interactive Slope Stability Program

Analysis Options

Slices Type:	Vertical
Analysis M	ethods Used
A STATE AND CONTROL CO	Bishop simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Materials

UNWEATHERED SHALE

Color

FC Color Mohr-Coulomb Strength Type Unsaturated Unit Weight [lbs/ft3] 116 Saturated Unit Weight [lbs/ft3] 120 100 Cohesion [psf] Friction Angle [deg] 16 None Water Surface 0 Ru Value WASTE Color Shear Normal function Strength Type 65 Unsaturated Unit Weight [lbs/ft3] 65 Saturated Unit Weight [lbs/ft3] None Water Surface 0 Ru Value LINER Color Mohr-Coulomb Strength Type 120 Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3] 124 100 Cohesion [psf] 16 Friction Angle [deg] None Water Surface Ru Value COMPACTED FILL Color Mohr-Coulomb Strength Type 125 Unsaturated Unit Weight [lbs/ft3] 130 Saturated Unit Weight [lbs/ft3] 200 Cohesion [psf] 20 Friction Angle [deg] None Water Surface 0 Ru Value **WEATHERED SHALE** Color Mohr-Coulomb Strength Type 135 Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3] 140 2000 Cohesion [psf] 40 Friction Angle [deg] Water Table Water Surface 1 Hu Value

Effective_Circular

Strength Type	Generalized Hoek-Brown
Unsaturated Unit Weight [lbs/ft3]	135
Saturated Unit Weight [lbs/ft3]	140
Unconfined Compressive Strength (intact) [psf]	50000
GSI	85
mi	6
Disturbance	1
Water Surface	Water Table
Hu Value	1

Shear Normal Functions

Name: User Defined 1	
Effective Norm	nal (psf) Shear (psf)
0	500
208	500
417	500
625	500
626	406.53
834	541.61
1040	675.38
1250	811.76
2500	1623.52
25000	16235.2

FS	2.227110
Center:	1293.256, 1097.415
Radius:	621.404
Left Slip Surface Endpoint:	920.593, 600.158
Right Slip Surface Endpoint:	1387.342, 483.175
Resisting Moment:	3.57163e+08 lb-ft
Driving Moment:	1.60371e+08 lb-ft
Total Slice Area:	16001.5 ft2
Surface Horizontal Width:	466.749 ft
Surface Average Height:	34.2829 ft

Slide Analysis Information

Total_Circular

Project Summary

File Name:

Slide Modeler Version:

Compute Time:

Project Title:

Date Created:

Total_Circular.slmd

9.018

00h:00m:01.486s

SLIDE - An Interactive Slope Stability Program

Analysis Options

Slices Type:	Vertical
Analysis M	ethods Used
SELECTION OF PRINCE WATER SELECTION AND THE SELECTION OF	Bishop simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Materials

FC

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Ru Value

WASTE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Water Surface Ru Value

LINER

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Ru Value

COMPACTED FILL

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Ru Value

WEATHERED SHALE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf] Friction Angle [deg] Water Surface

Hu Value
UNWEATHERED SHALE

Color

Mohr-Coulomb

Shear Normal function

Mohr-Coulomb

Mohr-Coulomb

Mohr-Coulomb

Water Table

1

Total_Circular

Strength Type Generalized Hoek-Brown Unsaturated Unit Weight [lbs/ft3] 135 Saturated Unit Weight [lbs/ft3] 140 Unconfined Compressive Strength (intact) [psf] 50000 85 GSI mi 6 Disturbance 1 Water Table Water Surface Hu Value

Shear Normal Functions

Name: User Defined 1	
Effective Norm	al (psf) Shear (psf)
o	500
208	500
417	500
625	500
626	406.53
834	541.61
1040	675.38
1250	811.76
2500	1623.52
25000	16235.2

2.364560
300.234, 645.647
72.105
164.463, 539.881
369.565, 488.124
.25785e+07 lb-ft
.37779e+07 lb-ft
331.33 ft2
05.102 ft
5.9936 ft

Slide Analysis Information Peak_Block

Project Summary

File Name:

Slide Modeler Version:

Compute Time:

Project Title:

Date Created:

Peak_Block.slmd

9.018

00h:00m:00.601s

SLIDE - An Interactive Slope Stability Program

Analysis Options

Slices Type:	Vertical
Analysis M	ethods Used
II Quel (2000e) Modernia in y administrativa (i.e., i.e., horsendernia (i.e.) propinti (i.e., i.e., normalista	Bishop simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Color

Materials

FC Color Mohr-Coulomb Strength Type 116 Unsaturated Unit Weight [lbs/ft3] 120 Saturated Unit Weight [lbs/ft3] 100 Cohesion [psf] 16 Friction Angle [deg] None Water Surface 0 Ru Value WASTE Color Shear Normal function Strength Type Unsaturated Unit Weight [lbs/ft3] 65 Saturated Unit Weight [lbs/ft3] None Water Surface Ru Value LINER Color Mohr-Coulomb Strength Type 120 Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3] 124 100 Cohesion [psf] 16 Friction Angle [deg] Water Surface None 0 Ru Value **COMPACTED FILL** Color Mohr-Coulomb Strength Type Unsaturated Unit Weight [lbs/ft3] 125 130 Saturated Unit Weight [lbs/ft3] 200 Cohesion [psf] 20 Friction Angle [deg] Water Surface None 0 Ru Value **WEATHERED SHALE** Color Mohr-Coulomb Strength Type 135 Unsaturated Unit Weight [lbs/ft3] 140 Saturated Unit Weight [lbs/ft3] 2000 Cohesion [psf] 40 Friction Angle [deg] Water Table Water Surface 1 Hu Value **UNWEATHERED SHALE**

Strength Type Generalized Hoek-Brown
Unsaturated Unit Weight [lbs/ft3] 135
Saturated Unit Weight [lbs/ft3] 140
Unconfined Compressive Strength (intact) [psf] 50000
GSI 85
mi 6
Disturbance 1

Water Surface Water Table

Hu Value

Shear Normal Functions

Name: User Defined 1	
Effective Norm	al (psf) Shear (psf)
0	500
208	500
417	500
625	500
626	406.53
834	541.61
1040	675.38
1250	811.76
2500	1623.52
25000	16235.2

FS	1.885460
Axis Location:	1149.299, 1495.172
Left Slip Surface Endpoint:	477.824, 709.595
Right Slip Surface Endpoint:	1374.875, 486.645
Resisting Moment:	1.9074e+09 lb-ft
Driving Moment:	1.01164e+09 lb-ft
Total Slice Area:	71863.9 ft2
Surface Horizontal Width:	897.051 ft
Surface Average Height:	80.1112 ft

Slide Analysis Information

Residual_Block

Project Summary

File Name:

Slide Modeler Version:

Compute Time:

Project Title:

Date Created:

Residual_Block.slmd

9.018

00h:00m:00.642s

SLIDE - An Interactive Slope Stability Program

Analysis Options

Slices Type:	Vertical	
Analysis Methods Used		
go exculpage for all the medical page of a port Appendix is the medical page of the page o	Bishop simplified	
Number of slices:	50	
Tolerance:	0.005	
Maximum number of iterations:	75	
Check malpha < 0.2:	Yes	
Create Interslice boundaries at intersections with water tables and piezos:	Yes	
Initial trial value of FS:	1	
Steffensen Iteration:	Yes	

Materials

UNWEATHERED SHALE

Color

FC Color Mohr-Coulomb Strength Type 116 Unsaturated Unit Weight [lbs/ft3] 120 Saturated Unit Weight [lbs/ft3] 100 Cohesion [psf] 12 Friction Angle [deg] None Water Surface 0 Ru Value WASTE Color Shear Normal function Strength Type Unsaturated Unit Weight [lbs/ft3] 65 Saturated Unit Weight [lbs/ft3] None Water Surface Ru Value 0 LINER Color Mohr-Coulomb Strength Type 120 Unsaturated Unit Weight [lbs/ft3] 124 Saturated Unit Weight [lbs/ft3] 80 Cohesion [psf] 10 Friction Angle [deg] Water Surface None 0 Ru Value COMPACTED FILL Color Mohr-Coulomb Strength Type 125 Unsaturated Unit Weight [lbs/ft3] 130 Saturated Unit Weight [lbs/ft3] 200 Cohesion [psf] Friction Angle [deg] 20 None Water Surface 0 Ru Value **WEATHERED SHALE** Color Mohr-Coulomb Strength Type 135 Unsaturated Unit Weight [lbs/ft3] 140 Saturated Unit Weight [lbs/ft3] 2000 Cohesion [psf] 40 Friction Angle [deg] Water Table Water Surface 1 Hu Value

Residual_Block

Generalized Hoek-Brown Strength Type Unsaturated Unit Weight [lbs/ft3] 135 Saturated Unit Weight [lbs/ft3] 140 Unconfined Compressive Strength (intact) [psf] 50000 85 GSI 6 mi Disturbance 1 Water Surface Water Table Hu Value 1

Shear Normal Functions

Name: User Defined 1	
Effective Norma	l (psf) Shear (psf)
0	500
208	500
417	500
625	500
626	406.53
834	541.61
1040	675.38
1250	811.76
2500	1623.52
25000	16235.2

FS	1,433420
Axis Location:	1169.487, 1420.914
Left Slip Surface Endpoint:	546.655, 692.582
Right Slip Surface Endpoint:	1378.453, 485.650
Resisting Moment:	1.13374e+09 lb-ft
Driving Moment:	7.90934e+08 lb-ft
Total Slice Area:	61698.9 ft2
Surface Horizontal Width:	831.798 ft
Surface Average Height:	74.1753 ft

SLOPE STABILITY SECTION C-C — OVERLINER CONDITIONS SLIDE2 OUTPUT RESULTS

Slide Analysis Information

Effective_Circular_Section_C

Project Summary

File Name:

Slide Modeler Version:

Compute Time:

Project Title:

Date Created:

Effective_Circular_Section_C.slmd

9.018

00h:00m:00.945s

SLIDE - An Interactive Slope Stability Program

Analysis Options

Slices Type:	Vertical
Analysis M	ethods Used
The control of the co	Bishop simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Materials FC Color Strength Type Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3] Cohesion [psf] Friction Angle [deg] Water Surface Ru Value WASTE Color Strength Type Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3] Water Surface Ru Value

LINER Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Ru Value

ALLUVIUM

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Hu Value

COMPACTED FILL

Color

Strength Type
Unsaturated Unit Weight [lbs/ft3]

Saturated Unit Weight [lbs/ft3] Cohesion [psf] Friction Angle [deg]

Water Surface Ru Value

WEATHERED SHALE

Color

Mohr-Coulomb

Shear Normal function

65 None 0

Mohr-Coulomb

Mohr-Coulomb

Water Table

1

Mohr-Coulomb

125

0

Effective_Circular_Section_C

Strength Type Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3] Cohesion [psf]

Friction Angle [deg] Water Surface

Hu Value

Mohr-Coulomb

Water Table

UNWEATHERED SHALE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3] Unconfined Compressive Strength (intact) [psf] GSI

mi Disturbance Water Surface

Hu Value

Generalized Hoek-Brown

Water Table

1

Shear Normal Functions

Name: User	Defined 1		
- 1	Effective Normal (psf)		Shear (psf)
0		500	
208		500	
417		500	
625		500	
626		406.53	
834		541.61	
1040	· ·	675.38	
1250		811.76	
2500		1623.52	
25000		16235.2	

Global Minimums

Method: bishop simplified

FS	2.590190
Center:	929.582, 1529.071
Radius:	1094.999
Left Slip Surface Endpoint:	168.126, 742.173
Right Slip Surface Endpoint:	1253.319, 483.023
Resisting Moment:	4.83902e+09 lb-ft
Driving Moment:	1.86821e+09 lb-ft
Total Slice Area:	117953 ft2
Surface Horizontal Width:	1085.19 ft
Surface Average Height:	108.693 ft

Slide Analysis Information Total_Circular_Section_C

Project Summary

File Name:

Slide Modeler Version:

Compute Time:

Project Title:

Date Created:

Total_Circular_Section_C.slmd

9.018

00h:00m:00.960s

SLIDE - An Interactive Slope Stability Program

12/16/2021, 3:01:16 PM

Analysis Options

Slices Type:	Vertical
Analysis M	ethods Used
To a subsequent of the extendignous or common or as commo	Bishop simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Materials

WEATHERED SHALE

Color

Marchais	
FC	
Color	
	Mohr-Coulomb
Strength Type Unsaturated Unit Weight [lbs/ft3]	116
Saturated Unit Weight [lbs/ft3]	120
Cohesion [psf]	100
Friction Angle [deg]	16
Water Surface	None
Ru Value	0
WASTE	
Color	
Strength Type	Shear Normal function
Unsaturated Unit Weight [lbs/ft3]	65
Saturated Unit Weight [lbs/ft3]	65
Water Surface	None
Ru Value	0
LINER	
Color	
Strength Type	Mohr-Coulomb
Unsaturated Unit Weight [lbs/ft3]	120
Saturated Unit Weight [lbs/ft3]	124
Cohesion [psf]	100
Friction Angle [deg]	16
Water Surface	None
Ru Value	0
ALLUVIUM	
Color	
Strength Type	Mohr-Coulomb
Unsaturated Unit Weight [lbs/ft3]	125
Saturated Unit Weight [lbs/ft3]	130
Cohesion [psf]	3500
Friction Angle [deg]	0
Water Surface	Water Table
Hu Value	
COMPACTED FILL	
Color	
Strength Type	Mohr-Coulomb
Unsaturated Unit Weight [lbs/ft3]	125
Saturated Unit Weight [lbs/ft3]	130
Cohesion [psf]	2000
Friction Angle [deg]	0
Water Surface	None
Ru Value	

Total_Circular_Section_C

Strength Type
Unsaturated Unit Weight [lbs/ft3]
Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface

Water Surface

Hu Value

UNWEATHERED SHALE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3]
Saturated Unit Weight [lbs/ft3]
Unconfined Compressive Strength (intact) [psf]

GSI mi Disturbance

Water Surface

Hu Value

Mohr-Coulomb

Water Table

1

السا

Generalized Hoek-Brown

Water Table

1

Shear Normal Functions

Name: User Defined 1	
Effective Normal (psf)	Shear (psf)
0	500
208	500
417	500
625	500
626	406.53
834	541.61
1040	675.38
1250	811.76
2500	1623.52
25000	16235.2

Global Minimums

Method: bishop simplified

FS	2.259280
Center:	793.563, 1287.788
Radius:	871.944
Left Slip Surface Endpoint:	111.147, 745.022
Right Slip Surface Endpoint:	1168.834, 500.731
Resisting Moment:	3.95979e+09 lb-ft
Driving Moment:	1.75268e+09 lb-ft
Total Slice Area:	149990 ft2
Surface Horizontal Width:	1057.69 ft
Surface Average Height:	141.809 ft

Slide Analysis Information Peak_Block

Project Summary

File Name:

Slide Modeler Version:

Compute Time:

Project Title:

Date Created:

Peak_Block.slmd

9.018

00h:00m:00.464s

SLIDE - An Interactive Slope Stability Program

12/16/2021, 3:01:16 PM

Analysis Options

Slices Type:	Vertical
Analysis M	ethods Used
	Bishop simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Color

Materials

Materials	
FC Color Strength Type Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3] Cohesion [psf] Friction Angle [deg] Water Surface Ru Value WASTE Color Strength Type Unsaturated Unit Weight [lbs/ft3]	Mohr-Coulomb 116 120 100 16 None 0
Saturated Unit Weight [lbs/ft3] Water Surface Ru Value LINER	65 None 0
Color Strength Type Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3] Cohesion [psf] Friction Angle [deg] Water Surface Ru Value ALLUVIUM	Mohr-Coulomb 120 124 100 16 None 0
Color Strength Type Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3] Cohesion [psf] Friction Angle [deg] Water Surface Hu Value COMPACTED FILL	Mohr-Coulomb 125 130 3500 0 Water Table 1
Color Strength Type Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3] Cohesion [psf] Friction Angle [deg] Water Surface Ru Value WEATHERED SHALE	Mohr-Coulomb 125 130 2000 0 None 0

Peak_Block

Strength Type
Unsaturated Unit Weight [lbs/ft3]
Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface

Water Surface
Hu Value

UNWEATHERED SHALE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3]
Saturated Unit Weight [lbs/ft3]

Unconfined Compressive Strength (intact) [psf]

GSI mi Distr

Disturbance Water Surface

Hu Value

Mohr-Coulomb

Water Table

1

Generalized Hoek-Brown

Water Table

1

Shear Normal Functions

Name: User Defined 1	
Effective Normal (psf)	Shear (psf)
0	500
208	500
417	500
625	500
626	406.53
834	541.61
1040	675.38
1250	811.76
2500	1623.52
25000	16235.2

Global Minimums

Method: bishop simplified

FS	1,977560
Axis Location:	931.605, 1596.910
Left Slip Surface Endpoint:	200.736, 740.543
Right Slip Surface Endpoint:	1178.178, 498.395
Resisting Moment:	2.35571e+09 lb-ft
Driving Moment:	1.19122e+09 lb-ft
Total Slice Area:	80606.2 ft2
Surface Horizontal Width:	977.441 ft
Surface Average Height:	82.4665 ft

Slide Analysis Information Residual_Block

Project Summary

File Name:

Slide Modeler Version:

Compute Time:

Project Title:

Date Created:

Residual_Block.slmd

9.018

00h:00m:00.378s

SLIDE - An Interactive Slope Stability Program

12/16/2021, 3:01:16 PM

Analysis Options

Slices Type:	Vertical
Analysis M	ethods Used
Service applicate application of the service of the	Bishop simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Materials

FC	
Color	
Strength Type	Mohr-Coulomb
Unsaturated Unit Weight [lbs/ft3]	116
Saturated Unit Weight [lbs/ft3]	120
Cohesion [psf]	100
Friction Angle [deg]	12
Water Surface	None
Ru Value	
WASTE	
Color	
Strength Type	Shear Normal function
Unsaturated Unit Weight [lbs/ft3]	65
Saturated Unit Weight [lbs/ft3]	65
Water Surface	None
Ru Value	
LINER	
Color	
Strength Type	Mohr-Coulomb
Unsaturated Unit Weight [lbs/ft3]	120
Saturated Unit Weight [lbs/ft3]	124
Cohesion [psf]	80
Friction Angle [deg]	10
Water Surface	None
Ru Value	
ALLUVIUM	
Color	
Strength Type	Mohr-Coulomb
Unsaturated Unit Weight [lbs/ft3]	125
Saturated Unit Weight [lbs/ft3]	130
Cohesion [psf]	600
Friction Angle [deg]	22
Water Surface	Water Table
Hu Value COMPACTED FILL	1
Color	
	Mohr-Coulomb
Strength Type	125
Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]	130
Cohesion [psf]	200
Friction Angle [deg]	20
Water Surface	None
Ru Value	0
WEATHERED SHALE	
Color	a announcement with the second of the second
COTO	

Residual_Block

Strength Type Mohr-Coulomb
Unsaturated Unit Weight [lbs/ft3] 135
Saturated Unit Weight [lbs/ft3] 140
Cohesion [psf] 2000
Friction Angle [deg] 40
Water Surface Water Table
Hu Value 1

UNWEATHERED SHALE

Color

Strength Type Generalized Hoek-Brown Unsaturated Unit Weight [lbs/ft3] 135

Saturated Unit Weight [lbs/ft3] 140
Unconfined Compressive Strength (intact) [psf] 50000
GSI 85
mi 6

Disturbance 1
Water Surface Water Table

Hu Value

Shear Normal Functions

Name: User Defined 1	
Effective Normal (psf)	Shear (psf)
0	500
208	500
417	500
625	500
626	406.53
834	541.61
1040	675.38
1250	811.76
2500	1623.52
25000	16235.2

1

Global Minimums

Method: bishop simplified

FS	1.540390
Axis Location:	930.920, 1596.479
Left Slip Surface Endpoint:	200.499, 740.555
Right Slip Surface Endpoint:	1177.407, 498.588
Resisting Moment:	1.79155e+09 lb-ft
Driving Moment:	1.16305e+09 lb-ft
Total Slice Area:	80612.3 ft2
Surface Horizontal Width:	976.908 ft
Surface Average Height:	82.5178 ft

APPENDIX IIIE-A-3

INTERIM AND FINAL CLOSURE CONFIGURATION STABILITY ANALYSIS SLIDE2 OUTPUT FILES

Includes pages IIIE-A-3-1 through IIIE-A-3-75

SLOPE STABILITY SECTION D-D – INTERIM FILL SLOPE CONDITIONS SLIDE2 OUTPUT RESULTS

Slide Analysis Information

Effective_Circular_Section_D

Project Summary

File Name:

Slide Modeler Version:

Compute Time:

Project Title:

Date Created:

Effective_Circular_Section_D.slmd

9.018

00h:00m:01.364s

SLIDE - An Interactive Slope Stability Program

12/16/2021, 3:01:16 PM

Analysis Options

Slices Type:	Vertical
Analysis M	ethods Used
	Bishop simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Materials

FC

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Ru Value

WASTE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Water Surface Ru Value

LINER

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Ru Value

SANDSTONE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Hu Value

WEATHERED SHALE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Hu Value

UNWEATHERED SHALE

Color

Mohr-Coulomb

Shear Normal function

Mohr-Coulomb

Mohr-Coulomb

Water Table

1

Mohr-Coulomb

Water Table

1

Strength Type Generalized Hoek-Brown Unsaturated Unit Weight [lbs/ft3] 135 Saturated Unit Weight [lbs/ft3] 140 Unconfined Compressive Strength (intact) [psf] 50000 GSI 85 6 mi Disturbance 1 Water Surface Water Table Hu Value

Shear Normal Functions

Name: User Defined 1	
Effective Norm	al (psf) Shear (psf)
0	500
208	500
417	500
625	500
626	406.53
834	541.61
1040	675.38
1250	811.76
2500	1623.52
25000	16235.2

Global Minimums

Method: bishop simplified

FS	1.947080
Center:	170.448, 1195.683
Radius:	757.877
Left Slip Surface Endpoint:	31.141, 450.719
Right Slip Surface Endpoint:	723.723, 677.741
Resisting Moment:	1.32315e+09 lb-ft
Driving Moment:	6.79559e+08 lb-ft
Total Slice Area:	47236 ft2
Surface Horizontal Width:	692.582 ft
Surface Average Height:	68.2027 ft

Slide Analysis Information

Total_Circular_Section_D

Project Summary

File Name:

Slide Modeler Version:

Compute Time:

Project Title:

Date Created:

Total_Circular_Section_D.slmd

9.018

00h:00m:01.474s

SLIDE - An Interactive Slope Stability Program

12/16/2021, 3:01:16 PM

Analysis Options

Slices Type:	Vertical
Analysis M	ethods Used
	Bishop simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Materials

FC

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Ru Value

WASTE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Water Surface Ru Value

LINER

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Ru Value

SANDSTONE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Hu Value

WEATHERED SHALE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf] Friction Angle [deg] Water Surface

Hu Value
UNWEATHERED SHALE

Color

Mohr-Coulomb

Shear Normal function

Mohr-Coulomb

Mohr-Coulomb

Water Table

1

Mohr-Coulomb

Water Table

1

Strength Type Generalized Hoek-Brown
Unsaturated Unit Weight [lbs/ft3] 135
Saturated Unit Weight [lbs/ft3] 140
Unconfined Compressive Strength (intact) [psf] 50000
GSI 85
mi 6
Disturbance 1

Water Surface Water Table

Hu Value

Shear Normal Functions

Name: User Defined 1	
Effective Norm	al (psf) Shear (psf)
0	500
208	500
417	500
625	500
626	406.53
834	541.61
1040	675.38
1250	811.76
2500	1623.52
25000	16235.2

Global Minimums

Method: bishop simplified

FS	1.947080
Center:	170.448, 1195.683
Radius:	757.877
Left Slip Surface Endpoint:	31.141, 450.719
Right Slip Surface Endpoint:	723.723, 677.741
Resisting Moment:	1.32315e+09 lb-ft
Driving Moment:	6.79559e+08 lb-ft
Total Slice Area:	47236 ft2
Surface Horizontal Width:	692.582 ft
Surface Average Height:	68.2027 ft

Peak_Block

Project Summary

File Name:

Slide Modeler Version:

Compute Time:

Project Title:

Date Created:

Peak_Block.slmd

9.018

00h:00m:00.581s

SLIDE - An Interactive Slope Stability Program

Slices Type:	Vertical
Analysis Mo	ethods Used
	Bishop simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

FC

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Ru Value

WASTE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Water Surface Ru Value LINER

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Ru Value

SANDSTONE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Hu Value

WEATHERED SHALE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf] Friction Angle [deg] Water Surface

Hu Value

UNWEATHERED SHALE

Color

Mohr-Coulomb

Shear Normal function

Mohr-Coulomb

Mohr-Coulomb

Water Table

1

Mohr-Coulomb

Water Table

1

Strength Type Generalized Hoek-Brown Unsaturated Unit Weight [lbs/ft3] 135 Saturated Unit Weight [lbs/ft3] 140 Unconfined Compressive Strength (intact) [psf] 50000 85 GSI 6 mi Disturbance 1 Water Surface Water Table Hu Value

Name: User Defined 1	
Effective Norm	ial (psf) Shear (psf)
0	500
208	500
417	500
625	500
626	406.53
834	541.61
1040	675.38
1250	811.76
2500	1623.52
25000	16235.2

Global Minimums

Method: bishop simplified

FS	1.616760	Šijā Šija
Axis Location:	128.873, 1239.128	
Left Slip Surface Endpoint:	15.498, 445.505	
Right Slip Surface Endpoint:	695.747, 672.254	
Resisting Moment:	1.18421e+09 lb-ft	
Driving Moment:	7.32461e+08 lb-ft	
Total Slice Area:	53354.6 ft2	
Surface Horizontal Width:	680.249 ft	
Surface Average Height:	78.434 ft	

Residual_Block

Project Summary

File Name:

Slide Modeler Version:

Compute Time:

Project Title:

Date Created:

Residual_Block.slmd

9.018

00h:00m:00.519s

SLIDE - An Interactive Slope Stability Program

Slices Type:	Vertical
Analysis Mo	ethods Used
	Bishop simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

FC

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Ru Value

WASTE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Water Surface Ru Value

LINER

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf] Friction Angle [deg] Water Surface Ru Value

SANDSTONE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Hu Value

WEATHERED SHALE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf] Friction Angle [deg] Water Surface

Hu Value
UNWEATHERED SHALE

Color

Mohr-Coulomb

Shear Normal function

Mohr-Coulomb

Mohr-Coulomb

Water Table

1

Mohr-Coulomb

Water Table

1

Residual_Block

Strength Type Generalized Hoek-Brown Unsaturated Unit Weight [lbs/ft3] 135 Saturated Unit Weight [lbs/ft3] 140 Unconfined Compressive Strength (intact) [psf] 50000 GSI 85 mi 6 Disturbance 1 Water Table Water Surface Hu Value 1

Name: User Defined 1	
Effective Nor	mal (psf) Shear (psf)
0	500
208	500
417	500
625	500
626	406.53
834	541.61
1040	675.38
1250	811.76
2500	1623.52
25000	16235.2

Global Minimums

Method: bishop simplified

FS	1.295540
Axis Location:	137.177, 1263.741
Left Slip Surface Endpoint:	17.450, 446.155
Right Slip Surface Endpoint:	719.410, 677.408
Resisting Moment:	1.03163e+09 lb-ft
Driving Moment:	7.96292e+08 lb-ft
Total Slice Area:	57672.6 ft2
Surface Horizontal Width:	701.96 ft
Surface Average Height:	82.1595 ft

SLOPE STABILITY SECTION E-E – FINAL CLOSURE CONDITIONS SLIDE 2 OUTPUT RESULTS

Effective_Circular_Section_E

Project Summary

File Name:

Slide Modeler Version:

Compute Time:

Project Title:

Date Created:

Effective_Circular_Section_E.slmd

9.018

00h:00m:00.954s

SLIDE - An Interactive Slope Stability Program

Slices Type:	Vertical
Analysis M	ethods Used
	Bishop simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

FC

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Ru Value

WASTE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Water Surface Ru Value LINER

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Ru Value

COMPACTED FILL

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Ru Value

WEATHERED SHALE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Hu Value

UNWEATHERED SHALE

Color

Mohr-Coulomb

Shear Normal function

Mohr-Coulomb

Mohr-Coulomb

Mohr-Coulomb

Water Table

1

Effective_Circular_Section_E

Generalized Hoek-Brown Strength Type Unsaturated Unit Weight [lbs/ft3] 135 Saturated Unit Weight [lbs/ft3] 140 Unconfined Compressive Strength (intact) [psf] 50000 85 GSI 6 mi Disturbance 1 Water Table Water Surface Hu Value

Name: User Defined 1	
Effective Norm	ial (psf) Shear (psf)
0	500
208	500
417	500
625	500
626	406.53
834	541.61
1040	675.38
1250	811.76
2500	1623.52
25000	16235.2

Global Minimums

Method: bishop simplified

FS	2.674940
Center:	452.398, 1017.253
Radius:	586.564
Left Slip Surface Endpoint:	210.260, 483.000
Right Slip Surface Endpoint:	913.815, 655.104
Resisting Moment:	1.28859e+09 lb-ft
Driving Moment:	4.81727e+08 lb-ft
Total Slice Area:	61148.3 ft2
Surface Horizontal Width:	703.554 ft
Surface Average Height:	86.9134 ft

Total_Circular_Section_E

Project Summary

File Name:

Slide Modeler Version:

Compute Time:

Project Title:

Date Created:

Total_Circular_Section_E.slmd

9.018

00h:00m:00.928s

SLIDE - An Interactive Slope Stability Program

Slices Type:	Vertical
Analysis M	ethods Used
	Bishop simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

FC Color Mohr-Coulomb Strength Type 116 Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3] 120 100 Cohesion [psf] 16 Friction Angle [deg] Water Surface None Ru Value 0 WASTE Color Shear Normal function Strength Type Unsaturated Unit Weight [lbs/ft3] 65 65 Saturated Unit Weight [lbs/ft3] None Water Surface Ru Value LINER Color Mohr-Coulomb Strength Type 120 Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3] 124 100 Cohesion [psf] 16 Friction Angle [deg] Water Surface None Ru Value 0 COMPACTED FILL Color Mohr-Coulomb Strength Type Unsaturated Unit Weight [lbs/ft3] 125 130 Saturated Unit Weight [lbs/ft3] 2000 Cohesion [psf] Friction Angle [deg] None Water Surface

WEATHERED SHALE

Color

Ru Value

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf] Friction Angle [deg] Water Surface

Hu Value

UNWEATHERED SHALE

Color

0

Mohr-Coulomb

Water Table

Total_Circular_Section_E

Generalized Hoek-Brown Strength Type Unsaturated Unit Weight [lbs/ft3] 135 Saturated Unit Weight [lbs/ft3] 140 Unconfined Compressive Strength (intact) [psf] 50000 GSI 85 mi 6 Disturbance Water Table Water Surface Hu Value 1

Name: User Defined 1	
Effective Norm	al (psf) Shear (psf)
0	500
208	. 500
417	500
625	500
626	406.53
834	541.61
1040	675.38
1250	811.76
2500	1623.52
25000	16235.2

Global Minimums

Method: bishop simplified

FS	2.538040
Center:	541.475, 1162.731
Radius:	746.728
Left Slip Surface Endpoint:	227.336, 485.295
Right Slip Surface Endpoint:	1127.549, 700.000
Resisting Moment:	2.69103e+09 lb-ft
Driving Moment:	1.06028e+09 lb-ft
Total Slice Area:	104853 ft2
Surface Horizontal Width:	900.213 ft
Surface Average Height:	116.476 ft

Peak_Block

Project Summary

File Name:

Slide Modeler Version:

Compute Time:

Project Title:

Date Created:

Peak_Block.slmd

9.018

00h:00m:00.495s

SLIDE - An Interactive Slope Stability Program

Slices Type:	Vertical
Analysis M	ethods Used
	Bishop simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

FC

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Ru Value

WASTE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Water Surface Ru Value LINER

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Ru Value

COMPACTED FILL

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Ru Value

WEATHERED SHALE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Hu Value

UNWEATHERED SHALE

Color

116

Mohr-Coulomb

Shear Normal function

Mohr-Coulomb

Mohr-Coulomb

Mohr-Coulomb

Water Table

1

Peak_Block

Generalized Hoek-Brown Strength Type Unsaturated Unit Weight [lbs/ft3] 135 Saturated Unit Weight [lbs/ft3] 140 50000 Unconfined Compressive Strength (intact) [psf] 85 GSI 6 mi Disturbance 1 Water Table Water Surface 1 Hu Value

Name: User Defined 1	
Effective Norr	nal (psf) Shear (psf)
0	500
208	500
417	500
625	500
626	406.53
834	541.61
1040	675.38
1250	811.76
2500	1623.52
25000	16235.2

Global Minimums

Method: bishop simplified

FS	2.072630
Axis Location:	457.010, 1490.868
Left Slip Surface Endpoint:	223.345, 484.308
Right Slip Surface Endpoint:	1122.059, 700.000
Resisting Moment:	2.94586e+09 lb-ft
Driving Moment:	1.42131e+09 lb-ft
Total Slice Area:	105644 ft2
Surface Horizontal Width:	898.714 ft
Surface Average Height:	117.55 ft

Residual_Block

Project Summary

File Name:

Slide Modeler Version:

Compute Time:

Project Title:

Date Created:

Residual_Block.slmd

9.018

00h:00m:00.374s

SLIDE - An Interactive Slope Stability Program

Slices Type:	Vertical	
Analysis Methods Used		
	Bishop simplified	
Number of slices:	50	
Tolerance:	0.005	
Maximum number of iterations:	75	
Check malpha < 0.2:	Yes	
Create Interslice boundaries at intersections with water tables and piezos:	Yes	
Initial trial value of FS:	1	
Steffensen Iteration:	Yes	

UNWEATHERED SHALE

Color

FC Color Mohr-Coulomb Strength Type Unsaturated Unit Weight [lbs/ft3] 116 Saturated Unit Weight [lbs/ft3] 120 100 Cohesion [psf] 12 Friction Angle [deg] Water Surface None Ru Value 0 WASTE Color Shear Normal function Strength Type Unsaturated Unit Weight [lbs/ft3] 65 65 Saturated Unit Weight [lbs/ft3] Water Surface None Ru Value 0 LINER Color Mohr-Coulomb Strength Type Unsaturated Unit Weight [lbs/ft3] 120 Saturated Unit Weight [lbs/ft3] 124 80 Cohesion [psf] 10 Friction Angle [deg] Water Surface None Ru Value 0 **COMPACTED FILL** Color Strength Type Mohr-Coulomb Unsaturated Unit Weight [lbs/ft3] 125 Saturated Unit Weight [lbs/ft3] 130 200 Cohesion [psf] Friction Angle [deg] 20 None Water Surface 0 Ru Value **WEATHERED SHALE** Color Mohr-Coulomb Strength Type Unsaturated Unit Weight [lbs/ft3] 135 Saturated Unit Weight [lbs/ft3] 140 2000 Cohesion [psf] 40 Friction Angle [deg] Water Surface Water Table Hu Value

Residual_Block

Generalized Hoek-Brown Strength Type Unsaturated Unit Weight [lbs/ft3] 135 Saturated Unit Weight [lbs/ft3] 140 Unconfined Compressive Strength (intact) [psf] 50000 85 GSI 6 mi 1 Disturbance Water Table Water Surface Hu Value

Name: User Defined 1	
Effective Norma	al (psf) Shear (psf)
0	500
208	500
417	500
625	500
626	406.53
834	541.61
1040	675.38
1250	811.76
2500	1623.52
25000	16235.2

Global Minimums

Method: bishop simplified

FS	1.620520
Axis Location:	457.161, 1490.925
Left Slip Surface Endpoint:	223.448, 484.333
Right Slip Surface Endpoint:	1122.206, 700.000
Resisting Moment:	2.24439e+09 lb-ft
Driving Moment:	1.38498e+09 lb-ft
Total Slice Area:	105774 ft2
Surface Horizontal Width:	898.758 ft
Surface Average Height:	117.689 ft

SLOPE STABILITY SECTION F-F – FINAL CLOSURE CONDITIONS SLIDE2 OUTPUT RESULTS

Slide Analysis Information

Effective_Circular

Project Summary

File Name:

Slide Modeler Version:

Compute Time:

Project Title:

Date Created:

Effective_Circular.slmd

9.018

00h:00m:01.702s

SLIDE - An Interactive Slope Stability Program

12/16/2021, 3:01:16 PM

Analysis Options

Slices Type:	Vertical
Analysis M	ethods Used
	Bishop simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Materials

FC

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Ru Value

WASTE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Water Surface Ru Value LINER

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Ru Value

ALLUVIUM

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Hu Value

WEATHERED SHALE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Hu Value

UNWEATHERED SHALE

Color

Mohr-Coulomb

Shear Normal function

Mohr-Coulomb

Mohr-Coulomb

Water Table

1

Mohr-Coulomb

Water Table

1

Generalized Hoek-Brown Strength Type Unsaturated Unit Weight [lbs/ft3] 135 Saturated Unit Weight [lbs/ft3] 140 Unconfined Compressive Strength (intact) [psf] 50000 GSI 85 mi 6 Disturbance 1 Water Surface Water Table Hu Value 1

Shear Normal Functions

Name: User Defined 1	
Effective Norm	nal (psf) Shear (psf)
0	500
208	500
417	500
625	500
626	406.53
834	541.61
1040	675.38
1250	811.76
2500	1623.52
25000	16235.2

Global Minimums

Method: bishop simplified

FS	2.972920
Center:	644.674, 1008.145
Radius:	332.725
Left Slip Surface Endpoint:	447.021, 740.490
Right Slip Surface Endpoint:	699.361, 679.945
Resisting Moment:	7.33273e+07 lb-ft
Driving Moment:	2.46651e+07 lb-ft
Total Slice Area:	4802.26 ft2
Surface Horizontal Width:	252.341 ft
Surface Average Height:	19.0309 ft

Slide Analysis Information

Total_Circular

Project Summary

File Name:

Slide Modeler Version:

Compute Time:

Project Title:

Date Created:

Total_Circular.slmd

9.018

00h:00m:01.706s

SLIDE - An Interactive Slope Stability Program

12/16/2021, 3:01:16 PM

Analysis Options

Slices Type:	Vertical
Analysis M	ethods Used
	Bishop simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Materials

FC

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Ru Value

WASTE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Water Surface Ru Value LINER

TO THE STAN

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf] Friction Angle [deg] Water Surface Ru Value

ALLUVIUM

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Hu Value

WEATHERED SHALE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Hu Value

UNWEATHERED SHALE

Color

Mohr-Coulomb

Shear Normal function

Mohr-Coulomb

Mohr-Coulomb

Water Table

1

Mohr-Coulomb

120 140 4000

Water Table

1

Strength Type Generalized Hoek-Brown Unsaturated Unit Weight [lbs/ft3] 135 Saturated Unit Weight [lbs/ft3] 140 Unconfined Compressive Strength (intact) [psf] 50000 85 GSI 6 mi Disturbance 1 Water Surface Water Table Hu Value

Shear Normal Functions

Name: User Defined 1	
Effective Norm	al (psf) Shear (psf)
0	500
208	500
417	500
625	500
626	406.53
834	541.61
1040	675.38
1250	811.76
2500	1623.52
25000	16235.2

Global Minimums

Method: bishop simplified

FS	2.972920
Center:	644.674, 1008.145
Radius:	332.725
Left Slip Surface Endpoint:	447.021, 740.490
Right Slip Surface Endpoint:	699.361, 679.945
Resisting Moment:	7.33273e+07 lb-ft
Driving Moment:	2.46651e+07 lb-ft
Total Slice Area:	4802.26 ft2
Surface Horizontal Width:	252.341 ft
Surface Average Height:	19.0309 ft

Slide Analysis Information

Peak_Block

Project Summary

File Name:

Slide Modeler Version:

Compute Time:

Project Title:

Date Created:

Peak_Block.slmd

9.018

00h:00m:00.756s

SLIDE - An Interactive Slope Stability Program

12/16/2021, 3:01:16 PM

Analysis Options

Slices Type:	Vertical
Analysis M	ethods Used
	Bishop simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Materials

FC

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Ru Value

WASTE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Water Surface Ru Value LINER

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Ru Value

ALLUVIUM

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Hu Value

WEATHERED SHALE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Hu Value

UNWEATHERED SHALE

Color

Mohr-Coulomb

Shear Normal function

Mohr-Coulomb

Mohr-Coulomb

Water Table

1

Mohr-Coulomb

Water Table

1

Strength Type Generalized Hoek-Brown Unsaturated Unit Weight [lbs/ft3] 135 Saturated Unit Weight [lbs/ft3] 140 Unconfined Compressive Strength (intact) [psf] 50000 85 GSI 6 mi Disturbance 1 Water Surface Water Table Hu Value

Shear Normal Functions

Name: User Defined 1	
Effective Norn	nal (psf) Shear (psf)
0	500
208	500
417	500
625	500
626	406.53
834	541.61
1040	675.38
1250	811.76
2500	1623.52
25000	16235.2

Global Minimums

Method: bishop simplified

FS	3.704080
Axis Location:	1777.573, 3199.388
Left Slip Surface Endpoint:	192.790, 753.129
Right Slip Surface Endpoint:	2783.710, 463.806
Resisting Moment:	2.44722e+10 lb-ft
Driving Moment:	6.60683e+09 lb-ft
Total Slice Area:	394620 ft2
Surface Horizontal Width:	2590.92 ft
Surface Average Height:	152.309 ft

Slide Analysis Information

Residual_Block

Project Summary

File Name:

Slide Modeler Version:

Compute Time:

Project Title:

Date Created:

Residual_Block.slmd

9.018

00h:00m:00.807s

SLIDE - An Interactive Slope Stability Program

12/16/2021, 3:01:16 PM

Analysis Options

Slices Type:	Vertical
Analysis M	ethods Used
	Bishop simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1.
Steffensen Iteration:	Yes

Materials

FC

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf] Friction Angle [deg] Water Surface Ru Value

WASTE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Water Surface Ru Value LINER

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf] Friction Angle [deg] Water Surface Ru Value

ALLUVIUM

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf] Friction Angle [deg] Water Surface Hu Value

WEATHERED SHALE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf] Friction Angle [deg] Water Surface Hu Value

UNWEATHERED SHALE

Color

Mohr-Coulomb

Shear Normal function

Mohr-Coulomb

Mohr-Coulomb

Water Table

Mohr-Coulomb

Water Table

1

Strength Type Generalized Hoek-Brown Unsaturated Unit Weight [lbs/ft3] 135 Saturated Unit Weight [lbs/ft3] 140 50000 Unconfined Compressive Strength (intact) [psf] GSI 85 6 mi Disturbance 1 Water Table Water Surface Hu Value 1

Shear Normal Functions

Name: User Defined 1	
Effective Norm	nal (psf) Shear (psf)
0	500
208	500
417	500
625	500
626	406.53
834	541.61
1040	675.38
1250	811.76
2500	1623.52
25000	16235.2

Global Minimums

Method: bishop simplified

FS	2.925760
Axis Location:	1751.410, 3185.579
Left Slip Surface Endpoint:	183.077, 753.612
Right Slip Surface Endpoint:	2755.984, 471.733
Resisting Moment:	1.90328e+10 lb-ft
Driving Moment:	6.50526e+09 lb-ft
Total Slice Area:	397055 ft2
Surface Horizontal Width:	2572.91 ft
Surface Average Height:	154.322 ft

APPENDIX IIIE-A-4 INFINITE SLOPE STABILITY ANALYSIS

Includes pages IIIE-A-4-1 through IIIE-A-4-20

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-A-4

Chkd By: DEP Date: 1/20/2022

STABILITY ANALYSIS OF THE BOTTOM LINER SYSTEM

Required:

Evaluate the stability of the bottom liner system components.

Procedure:

- A. Bottom Liner System Stability Anchor Trench Design
 - 1. Verify that the tensile stress in the liner system will be less than the yield stress by using Koerner's method for determination of shear stress in liner systems considering cohesion/adhesion forces.
 - 2. Provide liner anchor trench design considering pullout of the geomembrane.
- B. Infinite Slope Stability Analysis
 - 1. Use Duncan and Buchignani's method for infinite stability analyses to evaluate the internal stability of the bottom liner system using peak and residual shear strength values.

Contents:

- Verification that the tensile stress in the bottom liner system will be less than yield stress is provided on Sheets IIIE-A-4-2 through IIIE-A-4-6.
- Anchor trench design is provided on Sheets IIIE-A-4-7 through IIIE-A-4-8.
- Infinite stability analysis to evaluate the internal stability of the bottom liner system is presented on Sheets IIIE-A-4-9 through IIIE-A-4-11.

References:

- 1. Koerner, Robert M., Designing with Geosynthetics, 3rd Edition, Prentice-Hall Inc., 1994.
- 2. Duncan, J.M. and Buchignani, A. L., *An Engineering Manual for Slope Stability Studies*, Department of Civil Engineering University of California-Berkeley, 1975.
- 3. USACE, *Slope Stability*, Engineering and Design Manual, EM 1110-2-1902, October 31, 2003.
- 4. Koerner, Robert M., *Analysis and Design of Veneer Cover Soils*, 1998 Sixth International Conference of Geosynthetics.
- 5. Koerner, George R. and Narejo, Dhani, *Direct Shear Database of Geosynthetic-to-Geosynthetic and Geosynthetic-to-Soil Interfaces*, GRI Report #30, June 14, 2005.
- 6. Gilbert, Robert B., Peak Versus Residual Strength for Waste Containment Systems,
- 7. Proceedings of the 15th GRI Conference, December 13, 2001.
- 8. NAVFAC Design Manual 7.01, September 1986.

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-A-4

Chkd By: DEP Date: 1/20/2022

BOTTOM LINER SYSTEM STABILITY - ANCHOR TRENCH DESIGN

A. Liner System Stability - Anchor Trench Design

Note:

The liner system includes a 2-foot-thick protective cover, drainage geocomposite, geomembrane, either a 2-foot-thick Compacted Clay Liner (CCL) or Geosynthetic Clay Liner (GCL).

1. Verify that tensile stress in liner system is less than yield stress for the liner system.

CCL OPTION (All Areas)

GCL OPTION (All Areas)

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-A-4

Chkd By: DEP Date: 1/20/2022

BOTTOM LINER SYSTEM STABILITY - ANCHOR TRENCH DESIGN

Definition of terms/variables:

 W_E = Weight of equipment, lb/ft

Assume a Caterpillar D8T WH Track-Type Tractor

Operational Weight =

Number of Tracks = 2

Track Width = 1.84 ft

85,150 lb

W_w = Weight of solid waste, lb/ft

 W_{PC} = Weight of protective cover, lb/ft

W_T = Combined weight of equipment, solid waste, and protective cover, lb/ft

T_{PC} = Friction force on edge of protective cover, lb/ft

W = Net force of equipment, waste, and protective cover on liner system, lb/ft

N = Normal force on liner system, lb/ft

P = Shearing force on liner system, lb/ft

 β = Slope angle, deg

 F_n = Resisting force, lb/ft, calculated using the equation:

 $(N * tan(\Delta_n)) + (C_{an} * L / cos(\beta))$

 F_1 = Resistance of protective cover/geocomposite interface, lb/ft

F₂ = Resistance of geocomposite/textured geomembrane interface, lb/ft

 F_3 = Resistance of textured geomembrane/geosynthetic clay liner interface, lb/ft

F₄= Resistance of internal geosynthetic clay liner, lb/ft

F₅ = Resistance of geosynthetic clay liner/geocomposite interface, lb/ft

 F_6 = Resistance of geocomposite/subgrade interface, lb/ft

 F_7 = Resistance of textured geomembrane/clay liner interface, lb/ft

 F_8 = Resistance of internal clay liner, lb/ft

F₉= Resistance of clay liner/geocomposite interface, lb/ft

 Δ_n = Interface friction angle of interface "n", deg

C_{an} = Adhesion of interface "n", psf

 ϕ_n = Internal friction angle of material "n", deg

 C_n = Cohesion of material "n", psf

 γ_{was} = Unit weight of solid waste (including daily cover), pcf

 $D_{was} = Individual lift height, ft$

 $\varphi_{\text{was}}\!=$ Internal friction angle of waste, deg

 γ_{pc} = Unit weight of protective cover, pcf

 D_{pc} = Thickness of protective cover, ft

 ϕ_{pc} = Internal friction angle of protective cover, deg

L = Horizontal length of lift, ft

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-A-4

Chkd By: DEP Date: 1/20/2022

BOTTOM LINER SYSTEM STABILITY - ANCHOR TRENCH DESIGN

Parameters:

$\beta_{\text{sideslope}} =$	18.43	deg	
$\Delta_1 =$	18	deg	
$C_{a1} =$	100	psf	
$\Delta_2 =$	21	deg	
$C_{a2} =$	100	psf	
$\Delta_3 =$	18	deg	
$C_{a3} =$	100	psf	
$\phi_4 =$	24	deg	
C ₄ =	100	psf	
$\Delta_5 =$	16	deg	
$C_{a5} =$	100	psf	
$\Delta_6 =$	18	deg	
$C_{a6} =$	200	psf	

$\Delta_7 =$	18	deg
$C_{a7} =$	100	psf
$\phi_8 =$	16	deg
$C^8 =$	100	psf
$\Delta_9 =$	18	deg
$C_{a9} =$	200	psf
$\gamma_{was} =$	59	pcf
$O_{\text{was}} =$	10	ft
$\phi_{\text{was}} =$	21	deg
$\gamma_{pc} =$	120	pcf
D _{pc} =	1	ft
$\phi_{pc} =$	16	deg
L =	30	ft

Note:

Interface friction strength values are selected conservatively from laboratory testing of similar material/interfaces. Prior to construction, laboratory tests will be performed to verify the assumed values for interface adhesion (or cohesion) and friction angle using project-specific soil and synthetic materials. The interface friction testing will be performed for the specific conditions analyzed. If test results differ from the assumed values, this analysis will be updated for acceptable factor of safety values using the procedure presented in the following sections.

Weight of Equipment

$$W_E = 23,139$$
 lb/ft

Weight of Solid Waste

$$W_{W} = \frac{D_{was} \times L \times \gamma_{was}}{2} \qquad W_{W} = 8,850 \quad \text{lb/ft}$$

Weight of Protective Cover

$$W_{PC} = D_{pc} x \gamma_{pc} x \frac{L}{\cos(\beta_{sideslope})}$$
 $W_{PC} = 3,795$ lb/ft

Combined Weight of Equipment, Solid Waste, and Protective Cover,

$$W_T = W_E + W_W + W_{PC}$$
 $W_T = 35,783$ lb/ft

Friction Force on Edge of Protective Cover

$$T_{PC} = k_o x \sigma_v x \tan \phi_{pc} x D_{pc}$$

where:

$$k_o = 1 - \sin \phi_{pc}$$

$$\sigma_{\rm v} = \frac{D_{\rm pc} \times \gamma_{\rm pc}}{2}$$

$$T_{\rm PC} = 12 \qquad 1b/{\rm ft}$$

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-A-4

Chkd By: DEP Date: 1/20/2022

BOTTOM LINER SYSTEM STABILITY - ANCHOR TRENCH DESIGN

Net Force of Equipment, Waste, and Protective Cover on Liner System

$$W = W_T - T_{PC} \qquad \qquad W = 35,771 \quad lb/ft$$

$$N = W \cos(\beta) \qquad \qquad N = 33,936 \quad lb/ft$$

$$P_{sideslope} = W \sin(\beta) \qquad \qquad P_{sideslope} = 11,309 \quad lb/ft$$

Compacted Clay Liner Option:

Resistance of Protective Cover/Geocomposite Interface = $F_1 = 14,189$ lb/ft

 $P_{\text{sideslope}} < F_1$ Therefore, protective cover soil is stable on the geocomposite and a driving force equal to P is transferred to the next interface.

Resistance of Geocomposite/Geomembrane Interface = $F_2 = 16,189$ lb/ft

 $P_{\text{sideslope}} < F_2$ Therefore, geocomposite is stable on the geomembrane and a driving force equal to P is transferred to the next interface.

Resistance of Geomembrane/Clay Liner Interface = $F_7 = 14,189$ lb/ft

 $P_{\text{sideslope}} < F_7$ Therefore, the geomembrane is stable on the clay liner and a driving force equal to P is transferred to the next interface.

Resistance of Internal Clay Liner= $F_8 = 12,893$ lb/ft

 $P_{\text{sideslope}} < F_8$ Therefore, the clay liner internally is stable and a driving force equal to P is transferred to the next interface.

Resistance of Clay Liner/Geocomposite Interface = $F_9 = 17,351$ lb/ft

 $P_{\text{sideslope}} < F_9$ Therefore, the clay liner is stable on the geocomposite and a driving force equal to P is transferred to the next interface.

Resistance of Geocomposite/Subgrade Interface = $F_6 = 17,351$ lb/ft

 $P_{\text{sideslope}} < F_6$ Therefore, the geocomposite is stable on the subgrade and a driving force equal to P is transferred to the next interface.

The Actual Tensile Force on liner system $(T_{act}) = 0$ lb/ft

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-A-4

Chkd By: DEP Date: 1/20/2022

BOTTOM LINER SYSTEM STABILITY - ANCHOR TRENCH DESIGN

Geosynthetic Clay Liner Option:

	Resistance of Protective Cover/Geocomposite Interface = F_1 =	14,189	lb/ft
$P_{\text{sideslope}} < F_1$	Therefore, protective cover soil is stable on the geocomposite and a drivin equal to P is transferred to the next interface.	ng force	
	Resistance of Geocomposite/Geomembrane Interface = F_2 =	16,189	lb/ft
$P_{\text{sideslope}} < F_2$	Therefore, geocomposite is stable on the geomembrane and a driving force to P is transferred to the next interface.	e equal	
	Resistance of Geomembrane/Geosynthetic Clay Liner Interface = F_3 =	14,189	lb/ft
$P_{\text{sideslope}} < F_3$	Therefore, geomembrane is stable on the geosynthetic clay liner and a dri equal to P is transferred to the next interface.	ving force	
	Resistance of Internal Geosynthetic Clay Liner = F ₄ =	18,272	lb/ft
$P_{\text{sideslope}} < F_4$	Therefore, the geosynthetic clay liner internally is stable and a driving for to P is transferred to the next interface.	ce equal	
	Resistance of Geosynthetic Clay Liner/Geocomposite Interface = F ₅ =	12,893	lb/ft
$P_{\text{sideslope}} < F_5$	Therefore, the geosynthetic clay liner is stable on the geocomposite and a force equal to P is transferred to the next interface.	driving	
	Resistance of Geocomposite/Subgrade Interface = F ₆ =	17,351	lb/ft
$P_{\text{sideslope}} < F_6$	Therefore, the geocomposite is stable on the subgrade and a driving force to P is transferred to the next interface.	equal	
	The Actual Tensile Force on Liner System $(T_{act}) =$	0	lb/ft

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-A-4

Chkd By: DEP Date: 1/20/2022

BOTTOM LINER SYSTEM STABILITY - ANCHOR TRENCH DESIGN

2. Provide liner anchor trench design considering pullout of the geomembrane.

Force Diagram for Liner System (analyzed for worst case CCL membrane interface)

$$T = F_{L1} + F_{L2} + F_{at}$$

Where T is the tensile force necessary for pullout

$$F_{L1} = (q_1 \tan \Delta)(L_1)$$

 $q_1 = Surcharge \; pressure = d_1 \; x \; \gamma_{soil}$

d₁= Depth of soil, ft

 γ_{soil} = Unit weight of soil, pcf

 Δ = Interface friction angle, degrees

 L_1 = Length of runout, ft

$$F_{L2} = (q_2 \tan \Delta)(L_2)$$

 q_2 = Surcharge pressure = $d_2 \times \gamma_{soil}$

 d_2 = Depth of soil, ft

 γ_{soil} = Unit weight of soil, pcf

 Δ = Interface friction angle, degrees

L₂= Length of runout, ft

$$F_{at} = (V \tan \Delta)(d_{at})$$

 $V = Average horizontal stress = K_o x y$

 $K_0 = 1 - \sin(r)$

r = Internal friction angle of soil, degrees

 $y = \gamma_{soil} x h_{ave}$

 γ_{soil} = Unit weight of soil, pcf

 h_{ave} = Average depth of trench, ft

 Δ = Interface friction angle, degrees

 d_{at} = Depth of trench, ft

Parameters:

$$\begin{array}{cccc} \gamma_{soil} = & 120 & pcf \\ \Delta = & 15 & deg \\ r = & 16 & deg \end{array}$$

$$\begin{array}{ccccc} d_1 = & 2.0 & \text{ft} \\ L_1 = & 6.0 & \text{ft} \\ d_2 = & 4.0 & \text{ft} \\ L_2 = & 2.0 & \text{ft} \\ d_{at} = & 2.0 & \text{ft} \\ a_{ave} = & 3.0 & \text{ft} \end{array}$$

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-A-4 BOTTOM LINER SYSTEM STABILITY - ANCHOR TRENCH DESIGN

Chkd By: DEP Date: 1/20/2022

Calculations:

$$F_{L1} = 385.8$$
 lb/ft
 $F_{L2} = 257.2$ lb/ft
 $F_{at} = 139.7$ lb/ft
 $T = 782.8$ lb/ft

Compare force required for pullout (T) with the actual tensile force in the geomembrane from Part 1:

$$T=$$
 783 $$lb$ / ft
$$T>T_{act} \label{eq:Tact}$$
 $T>T_{act}$

Therefore, the runout lengths are sufficient to prevent pullout.

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-A-4 STABILITY ANALYSIS OF THE BOTTOM LINER SYSTEM

Chkd By: DEP Date: 1/20/2022

B. Infinite Slope Stability Analysis

Interface friction strength values are selected conservatively from laboratory testing of similar material/interfaces. Prior to construction, laboratory tests will be performed to verify the assumed values for interface adhesion (or cohesion) and friction angle using project-specific soil and synthetic materials. The interface friction testing will be performed for the specific conditions analyzed. If test results differ from the assumed values, this analysis will be updated for acceptable factor of safety values using the procedure presented in the following sections.

LINER SYSTEM

The liner system includes a 2-foot-thick protective cover, drainage geocomposite, geomembrane, and either a 2-foot-thick. Compacted Clay Liner (CCL) or Geosynthetic Clay Liner (GCL).

1. Use Duncan and Buchignani's method for infinite stability analyses to evaluate the internal stability of the liner, overliner, and final cover systems using peak and residual shear strength values.

The factor of safety is calculated using the following equation:

$$F.S. = A \frac{\tan \Delta}{\tan \beta} + B \frac{C_a}{\gamma H}$$

where:

 Δ = Interface friction angle, deg

 C_a = Adhesion, psf

 β = Slope angle, deg

A = Parameter A from chart on page IIIE-A-4-12

B = Parameter B from chart on page IIIE-A-4-12

 γ = Unit weight of soil, pcf

H = Thickness of material above interface, ft

An example using the protective cover/geocomposite interface of the liner system is provided below.

A. Define the shear strength parameters (peak shear strength parameters will be used for this example).

$$\begin{array}{cccc} \Delta = & 18 & \text{deg} \\ C_a = & 100 & \text{psf} \end{array}$$

B. Calculate the pore pressure, r_{us} using the following equation:

$$r_u = (T \times \gamma_w \times \cos^2 \beta) / (H \times \gamma)$$

Prep By: MB/DEP Date: 1/20/2022

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-A-4

Chkd By: DEP Date: 1/20/2022

STABILITY ANALYSIS OF THE BOTTOM LINER SYSTEM

where:

H = Thickness of material above interface, ft

 $\gamma_{\rm w}$ = Unit weight of water, pcf

 β = Slope angle, deg

T = Maximum head above interface, ft

 γ = Unit weight of soil, pcf

$$H = 2$$
 ft

$$\gamma_w = 62.4$$
 pcf

$$\beta = 18.43 \quad \text{deg (3H:1V)}$$

$$T = 0$$
 ft

$$\gamma = 120$$
 pcf

$$r_{u} = 0.00$$

Since T=0, there is no pore pressure build-up in the protective cover. If the soil material is assumed to be saturated, use a unit weight of 125 pcf for soil.

C. Calculate the slope ratio, b.

$$b = \cot \beta = 3.0$$

D. Using r_u and b, determine Parameters A and B from the charts on page IIIE-A-4-12.

$$A = 1.0$$

$$B = 3.3$$

E. Calculate the factor of safety and compare against the minimum recommended factor of safety.

EC -	2.25		EC	1 6
F.S. =	2.33	>	$F.S{min} =$	1.5

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-A-4 STABILITY ANALYSIS OF THE BOTTOM LINER SYSTEM

Prep By: MB/DEP Date: 1/20/2022

Component/Interface	Cohesion	Strength P Cohesion/Adhesion (psf)	Strength Parameters Thesion Friction (de	erers Friction Angle (deg)	₩ €	4	В	1 (r.	q	A	В	Factor of Safety Generated	"Safety ated	Recommended Minimum Factor of Safety	200000000000000000000000000000000000000	Acceptable Factor of Safety	actor of
	Peak	Residual	Peak	Residual	ĺ)	(bct)	(gan)	(11)					Peak	Residual	Peak	Residual	Peak	Residual
Liner System - Compacted Clay Liner Option (3H:1V Maximum Slo	lay Liner	Option (3H	:1V Maxin	um Slope)														
Compacted Clay Liner																		
Protective Cover/Geocomposite	100	08	18	14	2	120	18.43	0	00:00	3.0	1.0	3.3	2.35	1.85	1.5	1.0	YES	YES
Geocomposite/Textured Geomembrane	100	80	21	10	2	120	18.43	0	0.00	3.0	1.0	3.3	2.53	1.63	1.5	1.0	YES	YES
Textured Geomembrane/Clay Liner	200	80	15	10	2	120	18.43	0	00:00	3.0	1.0	3.3	3.55	1.63	1.5	1.0	YES	YES
Clay Liner Internal	100	-	16	ı	2	120	18.43	0	0.00	3.0	1.0	3.3	2.24	1	1.5	-	YES	
Liner System - Geosynthetic Clay Liner Option (3H:1V Maximum Slope)	Clay Line	r Option (3	H:1V Max	imum Slop	(a)													
Geosynthetic Clay Liner																-		
Protective Cover/Geocomposite	100	08	24	14	2	120	18.43	0	00.00	3.0	1.0	3.3	2.71	1.85	1.5	1:0	YES	YES
Geocomposite/Textured Geomembrane	100	80	16	10	2	120	18.43	0	00:00	3.0	1.0	3.3	2.24	1.63	1.5	1.0	YES	YES
Textured Geomembrane/GCL	100	80	18	10	2	120	18.43	0	0.00	3.0	1.0	3.3	2.35	1.63	1.5	1.0	YES	YES
GCL Internal	100	-	24		2	120	18.43	0	00:00	3.0	1.0	3.3	2.71		1.5		YES	

 γ = total unit weight of soil

 $\gamma_w = \text{unit weight of water}$

c' = cohesion intercept

 ϕ' = friction angle

 r_u = pore pressure ratio = $u/\gamma H$

u = pore pressure at depth H

Steps.

ખું હું

- 1. Determine r_u from measured pore pressure or formulas at right.
- 2. Determine A and B from charts below.

3. Calculate
$$F = A \frac{\tan \phi'}{\tan \beta} + B \frac{c'}{\gamma H}$$

Seepage parallel to slope

$$r_{L} = \frac{X}{T} \frac{\gamma_{L}}{\gamma_{L}} \cos^{2} \beta$$

Seepage emerging from slope

$$r_{i} = \frac{\gamma_{i}}{\gamma} \frac{1}{1 + \tan\beta \tan\theta}$$

Figure E-7. Slope stability charts for infinite slopes (after Duncan, Buchianani, and DeWet 1987)

Prep By: MB/DEP Date: 1/20/2022

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-A-4 STABILITY ANALYSIS OF THE OVERLINER SYSTEM

Chkd By: DEP Date: 1/20/2022

Required:

Evaluate the stability of the overliner system components.

Procedure:

- A. Infinite Slope Stability Analysis
 - 1. Use Duncan and Buchignani's method for infinite stability analyses to evaluate the internal stability of the over liner system using peak and residual shear strength values.
- Infinite stability analysis to evaluate the internal stability of the over liner system is presented on Sheets IIIE-A-4-14 through IIIE-A-4-15.

Contents:

References:

- 1. Koerner, Robert M., Designing with Geosynthetics, 3rd Edition, Prentice-Hall Inc., 1994.
- 2. Duncan, J.M. and Buchignani, A. L., *An Engineering Manual for Slope Stability Studies*, Department of Civil Engineering University of California-Berkeley, 1975.
- USACE, Slope Stability, Engineering and Design Manual, EM 1110-2-1902, October 31, 2003.
- 4. Koerner, Robert M., *Analysis and Design of Veneer Cover Soils*, 1998 Sixth International Conference of Geosynthetics.

Koerner, George R. and Narejo, Dhani, Direct Shear Database of Geosynthetic-to-Geosynthetic and Geosynthetic-to-Soil Interfaces, GRI Report #30, June 14, 2005.

- 6. Gilbert, Robert B., Peak Versus Residual Strength for Waste Containment Systems,
- 7. Proceedings of the 15th GRI Conference, December 13, 2001.
- 8. NAVFAC Design Manual 7.01, September 1986.

Prep By: MB/DEP Date: 1/20/2022

CITY OF ARLINGTON LANDFILL 0023-404-11-102

APPENDIX IIIE-A-4

INFINITE SLOPE STABILITY ANALYSIS FOR OVERLINER SYSTEM

B. Infinite Slope Stability Analysis

Interface friction strength values are selected conservatively from laboratory testing of similar material/interfaces. Prior to construction, laboratory tests will be performed to verify the assumed values for interface adhesion (or cohesion) and friction angle using project-specific soil and synthetic materials. The interface friction testing will be performed for the specific conditions analyzed. If test results differ from the assumed values, this analysis will be updated for acceptable factor of safety values using the procedure presented in the following sections.

OVERLINER SYSTEM

The overliner system includes a 2-foot-thick protective cover, drainage geocomposite, geomembrane, and prepared subgrade.

1. Use Duncan and Buchignani's method for infinite stability analyses to evaluate the internal stability of the liner, overliner, and final cover systems using peak and residual shear strength values.

The factor of safety is calculated using the following equation:

$$F.S. = A \frac{\tan \Delta}{\tan \beta} + B \frac{C_a}{\gamma H}$$

where:

 Δ = Interface friction angle, deg

 $C_a = Adhesion, psf$

 β = Slope angle, deg

A = Parameter A from chart on page IIIE-A-4-12

B = Parameter B from chart on page IIIE-A-4-12

 γ = Unit weight of soil, pcf

H = Thickness of material above interface, ft

An example using the protective cover/geocomposite interface of the liner system is provided below.

A. Define the shear strength parameters (peak shear strength parameters will be used for this example).

$$\begin{array}{cccc} \Delta = & 18 & \text{deg} \\ C_a = & 100 & \text{psf} \end{array}$$

B. Calculate the pore pressure, $r_{\rm u}$, using the following equation:

$$r_u = (T \times \gamma_w \times \cos^2 \beta) / (H \times \gamma)$$

Chkd By: DEP

Date: 1/20/2022

Prep By: MB/DEP Date: 1/20/2022

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-A-4

Chkd By: DEP Date: 1/20/2022

INFINITE SLOPE STABILITY ANALYSIS FOR OVERLINER SYSTEM

where:

H = Thickness of material above interface, ft

 γ_w = Unit weight of water, pcf

 β = Slope angle, deg

T = Maximum head above interface, ft

 γ = Unit weight of soil, pcf

$$H = 2 ft$$

$$\gamma_w = 62.4 pcf$$

 $\beta = 11.31 \quad \text{deg (5H:1V)}$

T = 0 ft $\gamma = 120$ pcf

 $r_{11} = 0.00$

Since T=0, there is no pore pressure build-up in the protective cover. If the soil material is assumed to be saturated, use a unit weight of 125 pcf for soil.

C. Calculate the slope ratio, b.

$$b = \cot \beta = 5.0$$

D. Using r_u and b, determine Parameters A and B from the charts on page IIIE-A-4-12.

$$A = 1.0$$

 $B = 5.2$

E. Calculate the factor of safety and compare against the minimum recommended factor of safety.

F.S. =	3.8	>	$F.S{min} =$	1.5

Weaver Consultants Group, LLC Rev. 0, 1/21/2022

CITY OF ARLINGTON LANDFILL
0023-404-11-102
APPENDIX IIIE-A-4
INFINITE SLOPE STABILITY ANALYSIS FOR OVERLINER SYSTEM

Prep By: MB/DEP Date: 1/21/2022

		Strength F	Strength Parameters										Factor of Safety	Safety	Recommended	10000000	Accentable Factor of	Sector of
Component/Interface	Cohesion (p	Cohesion/Adhesion (psf)	Friction Angle (deg)	ı Angle g)	# €	١	β	⊢ ⊕	r,	þ	Ą	В	Generated	ated	Minimum Factor of Safety		Safety	y
	Peak	Residual	Peak	Residual	(11)	(pet)	(Han)	(11)					Peak	Residual	Peak	Residual	Peak	Residual
Overliner System (20% Slope)	e)																	
Geosynthetic Clay Liner																		
Protective Cover/Geocomposite	100	80	18	14	2	120	11.31	0	0.00	5.0	1.0	5.2	3.8	3.0	1.5	1.0	YES	YES
Geocomposite/Textured Geomembrane	100	80	21	10	2	120	11.31	0	00:00	5.0	1.0	5.2	4.1	2.6	1.5	1.0	YES	YES
Textured Geomembrane/ GCL	100	80	18	10	2	120	11.31	0	00.00	5.0	1.0	5.2	3.8	2.6	1.5	1.0	YES	YES
GCL (Internal)	100		24		2	120	11.31	0	00:00	5.0	1.0	5.2	4.4		1.5	1.0	YES	
GCL/Soil Subgrade Interface	100	80	25	12	2	120	11.31	0	00:00	5.0	1.0	5.2	4.5	2.8	1.5	1.0	YES	YES
Overliner System (3% Slope)																		
Geosynthetic Clay Liner																		
Protective Cover/Geocomposite	100	80	18	14	2	120	1.72	0	00.00	33.3	1.0	6.2	13.4	10.4	1.5	1.0	YES	YES
Geocomposite/Textured Geomembrane	100	08	21	10	2	120	1.72	0	00:00	33.3	1.0	6.2	15.4	7.9	1.5	1.0	YES	YES
Textured Geomembrane/ GCL	100	08	18	10	2	120	1.72	0	0.00	33.3	1.0	6.2	13.4	7.9	1.5	1.0	YES	YES
GCL (Internal)	100		24		2	120	1.72	0	00.00	33.3	1.0	6.2	17.4	0.0	1.5	1.0	YES	
GCL/Soil Subgrade Interface	100	08	25	12	2	120	1.72	0	00:00	33.3	1.0	6.2	18.1	9.1	1.5	1.0	YES	YES

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-A-4

Chkd By: DEP Date: 5/10/2022

INFINITE SLOPE STABILITY ANALYSIS FOR FINAL COVER SYSTEM

Required:

Evaluate the stability of the final cover system components.

Procedure:

- A. Infinite Slope Stability Analysis
- 1. Use Duncan and Buchignani's method for infinite stability analyses to evaluate the internal stability of the final cover system using peak and residual shear strength values.
- 2. A separate infinite slope stability analysis for the GCL alternative has been included in the FCSQCP, Appendix IIIJ-B GCL Alternative Final Cover System Demonstration.
- Infinite stability analysis to evaluate the internal stability of the final cover system is presented on Sheets IIIE-A-4-18 through IIIE-A-4-20.

Contents:

- 1. Koerner, Robert M., Designing with Geosynthetics, 3rd Edition, Prentice-Hall Inc., 1994.
- 2. Duncan, J.M. and Buchignani, A. L., *An Engineering Manual for Slope Stability Studies*, Department of Civil Engineering University of California-Berkeley, 1975.
- 3. USACE, *Slope Stability*, Engineering and Design Manual, EM 1110-2-1902, October 31, 2003.
- 4. Koerner, Robert M., *Analysis and Design of Veneer Cover Soils*, 1998 Sixth International Conference of Geosynthetics.

References:

- Koerner, George R. and Narejo, Dhani, Direct Shear Database of Geosynthetic-to-Geosynthetic and Geosynthetic-to-Soil Interfaces, GRI Report #30, June 14, 2005.
- 6. Gilbert, Robert B., Peak Versus Residual Strength for Waste Containment Systems,
- 7. Proceedings of the 15th GRI Conference, December 13, 2001.
- 8. NAVFAC Design Manual 7.01, September 1986.

Prep By: MB/DEP Date: 5/10/2022

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-A-4

Chkd By: DEP Date: 5/10/2022

INFINITE SLOPE STABILITY ANALYSIS FOR FINAL COVER SYSTEM

B. Infinite Slope Stability Analysis

Interface friction strength values are selected conservatively from laboratory testing of similar material/interfaces. Prior to construction, laboratory tests will be performed to verify the assumed values for interface adhesion (or cohesion) and friction angle using project-specific soil and synthetic materials. The interface friction testing will be performed for the specific conditions analyzed. If test results differ from the assumed values, this analysis will be updated for acceptable factor of safety values using the procedure presented in the following sections.

The liner, overliner, and final cover systems are described below.

FINAL COVER SYSTEM

The final cover system includes a 1-foot-thick erosion layer, drainage geocomposite, geomembrane, and an 18-inch-thick clay infiltration layer or a layer of reinforced geosynthetic clay liner (GCL). The analysis of the GCL alternative is presented in the FCSQCP, Appendix IIIJ-B.

1. Use Duncan and Buchignani's method for infinite stability analyses to evaluate the internal stability of the liner, overliner, and final cover systems using peak and residual shear strength values.

The factor of safety is calculated using the following equation:

$$F.S. = A \frac{\tan \Delta}{\tan \beta} + B \frac{C_a}{\gamma H}$$

where:

 Δ = Interface friction angle, deg

 C_a = Adhesion, psf

 β = Slope angle, deg

A = Parameter A from chart on page IIIE-A-4-12

B = Parameter B from chart on page IIIE-A-4-12

 γ = Unit weight of soil, pcf

H = Thickness of material above interface, ft

An example using the protective cover/geocomposite interface of the liner system is provided below.

A. Define the shear strength parameters (peak shear strength parameters will be used for this example).

$$\Delta = \begin{array}{c} \Delta = \\ C_a = \end{array} \begin{array}{c} 18 \\ 100 \end{array} \text{ psf}$$

B. Calculate the pore pressure, r_u , using the following equation:

$$r_u = (T \times \gamma_w \times \cos^2 \beta) / (H \times \gamma)$$

Prep By: MB/DEP Date: 5/10/2022

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-A-4

Chkd By: DEP Date: 5/10/2022

INFINITE SLOPE STABILITY ANALYSIS FOR FINAL COVER SYSTEM

where:

H = Thickness of material above interface, ft

 γ_w = Unit weight of water, pcf

 β = Slope angle, deg

T = Maximum head above interface, ft

 γ = Unit weight of soil, pcf

$$\begin{array}{lll} H = & 1 & ft \\ \gamma_w = & 62.4 & pcf \\ \beta = & 14.04 & deg (3H:1V) \\ T = & 0 & ft \\ \gamma = & 120 & pcf \end{array}$$

$$r_u = & 0.00$$

Since T=0, there is no pore pressure build-up in the protective cover. If the soil material is assumed to be saturated, use a unit weight of 125 pcf for soil.

C. Calculate the slope ratio, b.

$$b = \cot \beta = 4.0$$

D. Using r_u and b, determine Parameters A and B from the charts on page IIIE-A-4-12.

$$A = 1.0$$
 $B = 4.2$

E. Calculate the factor of safety and compare against the minimum recommended factor of safety.

F.S. = 4.80	>	F.S. _{min} =	1.5
-------------	---	-----------------------	-----

Weaver Consultants Group, LLC

CITY OF ARLINCTON LANDFILL 0023-404-11-102 APPENDIX IIIE-A-4 INFINITE SLOPE STABILITY ANALYSIS FOR FINAL COVER SYSTEM

Prep By: MB/DEP Date: 5/10/2022

		Strength	Strength Parameters										Factor of Safety		Recommended		Acceptable Factor of	Factor of
Component/Interface	Cohesion (pt	Cohesion/Adhesion (psf)	Friction Angle (deg)	tion Angle (deg)	ш (, ,	β	Τ (ľ.	q	¥	В	Generated		Minimum Factor of Safety		Safety	ty
	Peak	Residual	Peak	Residual	9)	(ber)	(Rap)	(m)					Peak	Residual	Peak	Residual	Peak	Residual
Final Cover System - Infiltration Layer Option (4H:1V Maximum Slope) (See Note 1 regarding analysis of the GCL Alternative Final Cover System)	ition Layer	· Option (4.	H:1V Maxi	mum Slope) (See Note	1 regardin	ng analysis	of the GC	L Alternati	ve Final Co	ver Systen	(ι						
Compacted Clay Infiltration Layer Option	Option																	
Erosion Layer/Geocomposite	100	80	18	14	1	120	14.03	0	00.00	4.0	1.0	4.2	4.80	3.80	1.5	1.0	YES	YES
Geocomposite/Textured Geomembrane	100	80	21	10	1	120	14.03	0	0.00	4.0	1.0	4.2	5.04	3.51	1.5	1.0	YES	YES
Textured Geomembrane/Clay Infiltration Layer	100	1	24	-	1	120	14.03	0	. 00.0	4.0	1.0	4.2	5.28	-	1.5	1.0	YES	YES
Clay Infiltration Layer Internal	100	1	16		-	120	14.03	0	0.00	4.0	1.0	4.2	4.65		1.5	-	YES	1

1. A separate infinite slope stability analysis for the GCL alternative has been included in the FCSQCP, Appendix IIIJ-B - GCL Alternative Final Cover System Demonstration.

APPENDIX IIIE-A-5

INTERFACE SHEAR STRENGTH CONFORMANCE TESTING REQUIREMENTS

Includes Pages IIIE-A-5-1 through IIIE-A-5-16

DAVID E. POE
81734

CENSED

SONAL ENGINEERS

S-19-2022

INTERFACE SHEAR STRENGTH CONFORMANCE TESTING REQUIREMENTS

Prior to each construction event, interface shear strength conformance testing will be required for the specific soils and geosynthetics to be incorporated into the project. The required conformance testing requirements have been established for the project based on stability analyses performed for the expansion, as presented in Appendix IIIE-A. The assumed worst-case stability analysis (Section B-B) was selected as the condition to utilize in developing the conformance testing limits, and the stability analyses was iterated to find the minimum factors of safety (FS=1.5 for total stress and FS=1.0 for residual stress conditions). The results of this analysis are presented on Sheets IIIE-A-5-5 through IIIE-A-5-16.

The global stability analysis results represent the minimum interface shear strength required during future conformance testing. These values also are applicable to the internal shear strength of the clay liner and geosynthetic clay liner (GCL) if incorporated into the analysis and future liner designs.

The following values were developed to represent the minimum shear strength at the geosynthetic interfaces required during conformance testing.

Table IIIE-A-5-1
Minimum Shear Strength Values for Future Interface Shear Strength
Conformance Testing

Peak Shear Stro	ength Parameters	Residual Shear St	trength Parameters	Average
Cohesion/ Adhesion (psf)	Friction Angle (degrees)	Cohesion/ Adhesion (psf)	Friction Angle (degrees)	Waste Unit Weight (lb/cf)
100	11	50	5	65

A graph of the shear strength envelopes represented by the above values (for both Peak and Residual Stress Conditions) are presented on Sheets IIIE-A-5-3 and IIIE-A-5-4. Future laboratory conformance test results will be required to plot within the shaded zone on the graph, with test-specific shear strength values calculated assuming a waste density of 65 lb/cf (consistent with the values used for the graph) and strength parameters developed within the laboratory.

The above values may be used for stack testing of multiple geosynthetic and clay liner layers or testing of individual interfaces. A stack test (i.e., multiple geosynthetic or soil layers tested concurrently) meeting the above strength requirements demonstrates conformance of the individual materials used in the stack. Internal shear strength testing of GCL, clay liner, and protective cover will be performed as stand-alone tests, although interfaces with other materials may be performed as a stack test.

CITY OF ARLINGTON LANDFILL 0023-404-11-102

APPENDIX IIIE-A-5

GEOSYNTHETIC INTERFACE SHEAR STRENGTH TESTING REQUIREMENTS PEAK STRESS PARAMETERS

Minimum Allowable Peak Shear Strength Parameters¹

Friction Angle (φ, degrees)	11
Cohesion (c, psf)	100
Unit Weight of Overburden Waste (γ _{waste} , pcf)	65

Peak Shear Strength Calculations²

Fill height (H, ft)	Overburden Pressure (psf)	Peak Shear Strength ³ (psf)
0	0	100
10	650	226
50	3,250	732
100	6,500	1,363
150	9,750	1,995
200	13,000	2,627
300	19,500	3,890
350	22,750	4,522

Interface Shear Strength VS. Overburden Pressure Peak Stress Condition

Notes

- 1. Values shown are minimums developed from global stability analysis, and were used to develop the conformance graph shown
- 2. Shear strength values calculated based on an overburden stress of 65 pounds per cubic foot.
- 3. Shear Strength = Cohesion (c) + (H) x $(\gamma_{waste})(tan\phi)$
- 4. Laboratory interface shear strength test results plotting below the conformance line for overburden stresses below 650 psf (representing 10 feet of overburden fill) are not considering failing.

CITY OF ARLINGTON LANDFILL 0023-404-11-102

APPENDIX IIIE-A-5

GEOSYNTHETIC INTERFACE SHEAR STRENGTH TESTING REQUIREMENTS RESIDUAL STRESS PARAMETERS

Minimum Allowable Residual Shear Strength Parameters¹

Friction Angle (φ, degrees)	5
Cohesion (c, psf)	50
Unit Weight of Overburden Waste (γ _{waste} , pcf)	65

Residual Shear Strength Calculations²

Fill height (H, ft)	Overburden Pressure (psf)	Residual Shear Strength ³ (psf)
0	0	50
10	650	107
50	3,250	334
100	6,500	619
150	9,750	903
200	13,000	1,187
300	19,500	1,756
350	22,750	2,040

Interface Shear Strength VS. Overburden Pressure Residual Stress Condition

Notes

- 1. Values shown are minimums developed from global stability analysis, and were used to develop the conformance graph shown
- 2. Shear strength values calculated based on an overburden stress of 65 pounds per cubic foot.
- 3. Shear Strength = Cohesion (c) + (H) $x (\gamma_{waste})(tan\phi)$
- 4. Laboratory interface shear strength test results plotting below the conformance line for overburden stresses below 650 psf (representing 10 feet of overburden fill) are not considering failing.

Slide Analysis Information

Peak_Block

Project Summary

File Name:

Slide Modeler Version:

Compute Time:

Project Title:

Date Created:

Peak_Block.slmd

9.018

00h:00m:00.583s

SLIDE - An Interactive Slope Stability Program

12/16/2021, 3:01:16 PM

Analysis Options

Slices Type:	Vertical
Analysis M	ethods Used
V. J. W. J. W. V. H. W.	Bishop simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Materials

FC

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Ru Value

WASTE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Water Surface Ru Value LINER

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Ru Value

COMPACTED FILL

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Ru Value

WEATHERED SHALE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Hu Value

UNWEATHERED SHALE

Color

Mohr-Coulomb

Shear Normal function

Mohr-Coulomb

Mohr-Coulomb

Mohr-Coulomb

135 140 4000

Water Table

1

Strength Type Generalized Hoek-Brown Unsaturated Unit Weight [lbs/ft3] 135 Saturated Unit Weight [lbs/ft3] 140 Unconfined Compressive Strength (intact) [psf] 50000 GSI 85 mi 6 Disturbance 1 Water Surface Water Table Hu Value 1

Shear Normal Functions

Name: User Defined 1	
Effective Norm	ial (psf) Shear (psf)
0	500
208	500
417	500
625	500
626	406.53
834	541.61
1040	675.38
1250	811.76
2500	1623.52
25000	16235.2

Global Minimums

Method: bishop simplified

FS	1.522510
Axis Location:	1146.199, 1531.048
Left Slip Surface Endpoint:	449.813, 716.518
Right Slip Surface Endpoint:	1379.992, 485.221
Resisting Moment:	1.66254e+09 lb-ft
Driving Moment:	1.09197e+09 lb-ft
Total Slice Area:	76262 ft2
Surface Horizontal Width:	930.178 ft
Surface Average Height:	81.9864 ft

Slide Analysis Information

Residual_Block

Project Summary

File Name:

Slide Modeler Version:

Compute Time:

Project Title:

Date Created:

Residual_Block.slmd

9.018

00h:00m:00.575s

SLIDE - An Interactive Slope Stability Program

12/16/2021, 3:01:16 PM

Analysis Options

Slices Type:	Vertical
Analysis M	ethods Used
	Bishop simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Materials

FC

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Ru Value

WASTE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Water Surface Ru Value LINER

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Ru Value

COMPACTED FILL

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Ru Value

WEATHERED SHALE

Color

Strength Type

Unsaturated Unit Weight [lbs/ft3] Saturated Unit Weight [lbs/ft3]

Cohesion [psf]
Friction Angle [deg]
Water Surface
Hu Value

UNWEATHERED SHALE

Color

Mohr-Coulomb

Shear Normal function

Mohr-Coulomb

Mohr-Coulomb

Mohr-Coulomb

Water Table

1

Strength Type Generalized Hoek-Brown Unsaturated Unit Weight [lbs/ft3] 135 Saturated Unit Weight [lbs/ft3] 140 Unconfined Compressive Strength (intact) [psf] 50000 GSI 85 mi 6 Disturbance 1 Water Surface Water Table

Hu Value 1

Shear Normal Functions

Name: User Defined 1	
Effective Norn	nal (psf) Shear (psf)
0	500
208	500
417	500
625	500
626	406.53
834	541.61
1040	675.38
1250	811.76
2500	1623.52
25000	16235.2

Global Minimums

Method: bishop simplified

FS	1.011930
Axis Location:	1258.141, 1029.271
Left Slip Surface Endpoint:	895.634, 606.326
Right Slip Surface Endpoint:	1378.993, 485.499
Resisting Moment:	1.69582e+08 lb-ft
Driving Moment:	1.67583e+08 lb-ft
Total Slice Area:	22349.7 ft2
Surface Horizontal Width:	483.358 ft
Surface Average Height:	46.2384 ft

APPENDIX IIIE-B SETTLEMENT AND HEAVE ANALYSIS

CONTENTS

INTRODUCTION IIIE-B-1

APPENDIX IIIE-B-1

Foundation/Bottom Liner Settlement and Heave Analysis

APPENDIX IIIE-B-2

Final Cover System Settlement Analysis

APPENDIX IIIE-B-3

Overliner Settlement and Strain Analysis

APPENDIX IIIE-B-4

Foundation Heave Analysis

INTRODUCTION

This appendix includes the settlement, strain, and heave analyses for the foundation soils and the settlement and strain analyses for the overliner system and final cover systems. The following three appendices are developed for the foundation soils, overliner, and final cover, respectively.

- Appendix IIIE-B-1 includes the settlement, heave, and strain analyses for the foundation soils.
- Appendix IIIE-B-2 includes the settlement and strain analyses for the final cover system.
- Appendix IIIE-B-3 includes the settlement and strain calculations for the WDA overliner system.
- Appendix IIIE-B-4 includes the heave analysis for the foundation.

APPENDIX IIIE-B-1 FOUNDATION/BOTTOM LINER SETTLEMENT ANALYSIS

Includes pages IIIE-B-1-1 through IIIE-B-1-39

DAVID E. POE

81734

CENSED

SONAL ENGINEERS

5-19-2022

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-B-1 **BOTTOM LINER SYSTEM** SETTLEMENT AND STRAIN

Chkd By: DEP Date: 5/10/2022

Required:

Determine the post-settlement slope of the bottom liner system and verify that the strain induced on the bottom liner system due to settlement is within acceptable limits.

Method:

- A. Estimate settlement of subsurface below the bottom liner system. Settlement calculated by consolidation theory using SETTLE3. The program uses the Boussinesq method to approximate 2 dimensional consolidation of the foundation strata.
- 1. Waste filling and liner and final cover installation will result in loading of the foundation soils causing consolidation and potential differential settlement. The magnitude of consolidation and settlement will be a function of the net stress increase and properties of the foundation soils. Net stress increase is assumed to result from loading of the foundation soils during landfilling.
- 2. Modeling was performed using SETTLE3, RocScience, Inc (2021). Procedures are described below. Primary settlement (only) was analyzed. Secondary settlement within the shale formation is assumed negligible.
- 2a. The subgrade conditions were developed from the available boring logs, normalized to the excavation grades proposed for the landfill. Normalization refers to inputting boring information from the proposed excavation grade downward, based on recorded elevations shown on the logs. The borehole locations used to establish the subgrade conditions are shown on Sheet IIIE-B-1-8. For the analysis vertical loads were applied for the closed condition at the locations shown on Sheet IIIE-B-1-9.
- 2b. Load polygons were developed for input into SETTLE3, for the loading conditions proposed for the landfill. Vertical loads were estimated for each polygon vertex (at the locations shown on Sheet IIIM-B-1-9), and this information inputted into SETTLE3. The load polygons are shown on Sheet IIIM-B-1-10. Loads at the polygon vertices were estimated based on waste fill height and an assumed unit weight of waste (varies based on total waste
- 2c. The SETTLE3 program calculated total settlement based on Boussinesq equation. The model output files are included in Appendix IIIE-B-1-A. The settlement isopach created by SETTLE3 is presented on Sheet IIIE-B-1-11.
- 3. Utilizing the settlement values calculated by SETTLE3, post-settlement slopes and strains are calculated, as presented on Sheets IIIE-B-1-5 through IIIE-B-1-7. An example of the calculation method is presented on Sheets IIIE-B-1-3 and IIIE-B-1-4.

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-B-1 **BOTTOM LINER SYSTEM** SETTLEMENT AND STRAIN

Chkd By: DEP

Date: 5/10/2022

Description of Contents:

Sheet IIIE-B-1-1 presents the method used for the settlement analyses. Sheets IIIE-B-1-3 and IIIE-B-1-4 present the method of analysis for postsettlement slopes and strain between designated Evaluation Points.

Sheet IIIE-B-1-8 presents the borehole locations used to develop the subsurface profile for the SETTLE3 model.

Sheet IIIE-B-1-9 presents the final configuration load locations incorporated into the SETTLE3 model.

Sheet IIIE-B-1-10 presents the SETTLE3 load polygons incorporated into model. Sheet IIIE-B-1-11 presents the SETTLE3 settlement isopach.

Sheet IIIE-B-1-12 presents the Evaluation Points and Evaluation Lines used in analysis of the strain and post-settlement slopes for the bottom liner.

Tables 1A and 1B present the settlement results at the Evaluation Points and distances between the Evaluation Points.

Table 2 presents slope and strain summary results from the analysis.

References:

- 1. Sowers, George F., Settlement of Solid Waste, Proceedings of the Eighth International Conference on Soil Mechanics and Foundations Engineering, 1973.
- 2. Quian, Xuede, R.M. Koerner, D. H. Gray, Geotechnical Aspects of Landfill Design and Construction, Prentice-Hall, Inc., New Jersey, 2002.
- 3. Koerner, Robert M., Designing with Geosynthetics, Third Edition. Prentice-Hall, New Jersey, 1994.
- 4. Acar, Yalcin B. & Daniel, David E., Geoenvironment 2000 Characterization, Containment, Remediation, and Performance in Environmental Geotechnics, Volume 2, American Society of Civil Engineers, 1995.
- 5. Zornberg, Jorge G., et al., Retention of Free Liquids in Landfills Undergoing Vertical Expansion, Journal of Geotechnical and Geoenvironmental Engineering, July 1999.
- 6. Fassett, Jeffrey B., et al., Geotechnical Properties of Municipal Solid Wastes and Their Use in Landfill Design, Waste Tech, 1994.
- 7. SETTLE3, Version 5.009 Copyright © 2008-2021 Rocscience Inc.
- 8. Beggs, Ian D. et al, Assessment of Maximum Allowable Strains in Polyethylene and Polypropylene Geomembranes, Geo-Frontiers Congress, Austin, TX, 2005.
- 9. Golder Associates, City of Arlington Landfill, Permit Amendment Application, 2014.

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-B-1 **BOTTOM LINER SYSTEM** SETTLEMENT AND STRAIN

Chkd By: DEP Date: 5/10/2022

Solution:

A) Estimate settlement of bottom liner system.

The SETTLE3 model was used to determine waste loading-induced settlement in the bottom liner system. The vertices and polygons developed for the modeling are shown on Sheet IIIE-B-1-10. The analysis was performed for the final contours (at build-out) of the landfill.

Post-settlement slopes were calculated between the points shown on Sheet IIIE-B-1-12. The pre- and post-settlement elevations were determined from AutoCAD surfaces for the design condition and the post-settlement conditions from the SETTLE3 model. The post-settlement condition was generated as output from SETTLE3, which was used to develop the postsettlement surface (isopach) shown on Sheet IIIE-B-1-11. The pre and post-settlement point elevations are presented in Table 1A and 1B, and the strain and slope calculations are presented in Table 2.

B) Verify that strain induced on the bottom liner system components due to settlement is within acceptable limits.

Determine the post-settlement slope of the bottom liner and verify the strain induced on the geocomposite due to settlement is within acceptable limits.

Note that negative values indicate the components are in compression.

Strain =
$$\frac{L_f - L_o}{L_o}$$
 x100 (Reference 2, Page 472)

L_f= Final distance between evaluation points after total settlement (ft)

L_o = Initial distance between evaluation points before total settlement (ft)

An example calculation of the estimated strain is shown below for Evaluation Points BL8 and BL10. The estimated strain for all evaluation points is shown in Table 2.

Evaluation Point BL8 to Evaluation Point BL10:

Initial Distance:

Evaluation Point BL8 Elev. =	429.6	ft-msl
Evaluation Point BL10 Elev. =	437.5	ft-msl
Plan View Distance=	367.3	ft
$L_o =$	367.4	ft

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-B-1 BOTTOM LINER SYSTEM SETTLEMENT AND STRAIN

Chkd By: DEP Date: 5/10/2022

Total Settlement:

Total Settlement Point BL8= 0.11 ft
Total Settlement Point BL10= 0.67 ft

Final Distance (after settlement):

Evaluation Point BL17 Elev. = 429.5 ft-msl Evaluation Point BL18 Elev. = 436.8 ft-msl Plan View Distance= 367.3 ft $L \in 367.4 \text{ ft}$

Strain= -0.003%

Conclusions:

- Compacted clay liner component of bottom liner has the smallest allowable tensile strain value which is 0.5 percent (Reference 2, page 469).
- The allowable tensile strain for geosynthetic clay liner is 10 percent (ranges from 10 to 22 percent, Koerner et.al., 1996).
- The allowable tensile strain for an HDPE geomembrane is 6 to 8 percent (Reference 8).
- The allowable tensile strain for a drainage geocomposite (if used) is more than 20 percent for the geotextile (reference 3, page 112) and 200 percent for the geonet (reference 3, page 400).
- The maximum calculated strain (0.015%) represents tensile strain and is acceptable, therefore the system will be stable. The maximium compressive strain is -0.003%.

Prep By: MB Date: 5/10/2022

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-B-1 BOTTOM LINER SYSTEM SETTLEMENT SUMMARY

Chkd By: DEP Date: 5/10/2022

TABLE 1A. BOTTOM LINER SYSTEM - SETTLEMENT SUMMARY

Evaluation Point ¹	Initial Top of Bottom Liner Elevation (ft-msl)	Post-Settlement Top of Bottom Liner Elevation (ft- msl)	Total Top of Bottom Liner Settlement (ft)
BL1	442.0	441.9	0.06
BL2	437.8	437.2	0.60
BL3	442.3	440.9	1.40
BL4	436.0	435.9	0.08
BL5	430.8	430.7	0.04
BL6	445.0	444.9	0.11
BL7	438.0	437.9	0.12
BL8	429.6	429.5	0.11
BL9	442.0	441.8	0.15
BL10	437.5	436.8	0.67
BL11	456.8	456.2	0.58
BL12	453.3	451.8	1.47
BL13	456.0	454.7	1.32
BL14	464.0	462.9	1.09
BL15	453.0	451.5	1.51
BL16	462.0	461.0	0.96
BL17	456.0	454.8	1.17
BL18	458.0	456.8	1.15

¹ Refer to Sheet IIIE-B-1-12 for Evaluation Point locations BL1 thru BL18. Initial Top of Bottom Liner Elevations shown on Sheet IIIE-B-1-12.

Prep By: MB Date: 5/10/2022

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-B-1 BOTTOM LINER SYSTEM SETTLEMENT SUMMARY

Chkd By: DEP Date: 5/10/2022

TABLE 1B. DISTANCES BETWEEN SETTLEMENT EVALUATION POINTS

Evaluation Points ¹		
From	То	Distance (ft)
BL1	BL2	217.8
BL3	BL4	632.6
BL4	BL5	524.2
BL6	BL7	700.5
BL7	BL8	843.8
BL8	BL10	367.3
BL7	BL9	178.9
BL11	BL12	155.9
BL13	BL14	1723.4
BL15	BL17	469.7
BL16	BL17	1012.4
BL17	BL18	94.7

¹ Refer to Sheet IIIE-B-1-12 for Evaluation Points BL1 through BL18.

CITY OF ARLINGTON LANDFILL

Prep By: MB Date: 5/10/2022

0023-404-11-102 APPENDIX IIIE-B-1

APPENDIX IIIE-B-1 BOTTOM LINER SYSTEM SLOPE AND STRAIN AND SUMMARY

TABLE 2. BOTTOM LINER SYSTEM - SLOPE AND STRAIN SUMMARY

Evaluation Point ¹	on Point ¹	Initial Top of Botte Elevation (ft-msl)	Top of Bottom Liner Elevation (ft-msl)	Post-Settler Bottom Lin	Post-Settlement Top of Bottom Liner Elevation (ft-msl)	Plan View Distance (ft)	L° (ft)	L_{f} (ff)	Initial Slope (ft/ft)	Post-Settlement Slope (ft/ft)	Tensile Strain (%)
A	В	A	В	A	В						
BL1	BL2	442.0	437.8	441.9	437.2	217.8	217.9	217.9	0.019	0.022	0.005
BL3	BL4	442.3	436.0	440.9	435.9	632.6	632.6	632.6	0.010	0.008	-0.002
BL4	BL5	436.0	430.8	435.9	430.7	524.2	524.2	524.2	0.010	0.010	0.000
BL6	BL7	445.0	438.0	444.9	437.9	700.5	700.5	700.5	0.010	0.010	0.000
BL7	BL8	438.0	429.6	437.9	429.5	843.8	843.8	843.8	0.010	0.010	0.000
BL10	BL8	437.5	429.6	436.8	429.5	367.3	367.4	367.4	0.022	0.020	-0.003
BL9	BL7	442.0	438.0	441.8	437.9	178.9	178.9	178.9	0.022	0.022	0.000
BL11	BL12	456.8	453.3	456.2	451.8	155.9	156.0	156.0	0.022	0.028	0.015
BL14	BL13	464.0	456.0	462.9	454.7	1723.4	1723.4	1723.4	900.0	0.005	0.000
BL17	BL15	456.0	453.0	454.8	451.5	469.7	469.7	469.7	900'0	0.007	0.000
BL16	BL17	462.0	456.0	461.0	454.8	1012.4	1012.4	1012.4	900'0	900.0	0.000
BL18	BL17	458.0	456.0	456.8	454.8	94.7	94.7	94.7	0.021	0.021	0.000

Refer to Sheet IIIE-B-1-12 for Evaluation Point locations. The "A" and "B" points represent the upgradient and downgradient endpoints, respectively.

Weaver Consultants Group

CITY OF ARLINGTON LANDFILL TARRANT COUNTY, TEXAS

WWW.WCGRP.COM

SHEET IIIE-B-1-10

CAD: SHEET IIIE-B-1-11.DWG

Weaver Consultants Group TBPE REGISTRATION NO. F-3727

CITY OF ARLINGTON LANDFILL TARRANT COUNTY, TEXAS

SHEET IIIE-B-1-11

WWW.WCGRP.COM

COPYRIGHT @ 2021 WEAVER CONSULTANTS GROUP. ALL RIGHTS RESERVED.

Arlington Landfill Settlement Report Creation Date: 2021/12/13, 08:56:41

Table of Contents

Project Settings	
Stage Settings	5
Results	ε
Stage: Stage 1	6
Loads	
1. Fill Load: "Fill Load 1"	7
Coordinates and Load	
2. Fill Load: "Fill Load 2"	
3. Fill Load: "Fill Load 3"	
4. Fill Load: "Fill Load 4"	
5. Fill Load: "Fill Load 5"	
6. Fill Load: "Fill Load 6"	
7. Fill Load: "Fill Load 7"	
8. Fill Load: "Fill Load 8"	
9. Fill Load: "Fill Load 9"	
10. Fill Load: "Fill Load 10"	
11. Fill Load: "Fill Load 11"	
12. Fill Load: "Fill Load 13"	
13. Fill Load: "Fill Load 12"	
14. Fill Load: "Fill Load 14"	
15. Fill Load: "Fill Load 15"	
16. Fill Load: "Fill Load 16"	
17. Fill Load: "Fill Load 17"	
18. Fill Load: "Fill Load 18"	
19. Fill Load: "Fill Load 19"	
Soil Layers	
BH1 (B-109)	
BH2 (B-110)	
BH3 (B-112R)	
BH4 (B-113R)	
BH5 (B-116)	
BH6 (B-122)	
BH6-B (B-122)	
BH7 (B-123R)	
BH7-B (B-123R)	
BH8 (B-124)	
BH9 (B-131)	
BH10 (B-11.1)	
BH11 (B-11.3)	
BH12 (B-11.4)	
BH14 (B-11.7)	
BH14-B (B-11.7)	23

BH15 (B-11.8)	24
BH15-B (B-11.8)	
BH16 (B-11.9)	25
BH16-B (B-11.9)	25
pil Properties	27

Settle3 Analysis Information

Arlington Landfill Settlement

Project Settings

Document Name
Project Title
Date Created
Stress Computation Method
Minimum settlement ratio for subgrade modulus
Use average properties to calculate layered stresses
Improve consolidation accuracy
Ignore negative effective stresses in settlement
calculations

Arlington_Landfill_Settlement.s3z Arlington Landfill Settlement 7/16/2021, 10:08:58 AM Boussinesq 0.9

Stage Settings

Stage #	Name
1 Stage 1	

Results

Time taken to compute: 0 seconds

Stage: Stage 1

Data Type	Minimum	Maximum
Total Settlement [ft]	0	1.80527
Total Consolidation Settlement [ft]	-5.13594e-06	1.66815
Virgin Consolidation Settlement [ft]	0	1.50505
Recompression Consolidation Settlement [ft]	-5.13594e-06	0.192644
Immediate Settlement [ft]	0	0.201271
Loading Stress ZZ [ksf]	-0.00185476	24.3883
Loading Stress XX [ksf]	-14.6571	38.2716
Loading Stress YY [ksf]	-15.8109	28.0979
Effective Stress ZZ [ksf]	-0.00185476	31.5024
Effective Stress XX [ksf]	-14.6571	38.2716
Effective Stress YY [ksf]	-15.8109	34.2947
Total Stress ZZ [ksf]	0.372545	38.1168
Total Stress XX [ksf]	-14.2827	38.646
Total Stress YY [ksf]	-15.4365	40.9091
Modulus of Subgrade Reaction (Total) [ksf/ft]	-0.395186	211.667
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	-1.47835	321.853
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	-2.64921	568.221
Total Strain	-3.78711e-05	0.077613
Pore Water Pressure [ksf]	0.3744	6.6144
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.0005024	31.4983
Over-consolidation Ratio	1	26258.3
Void Ratio	0	0.500057
Hydroconsolidation Settlement [ft]	0	0
Undrained Shear Strength	-5.20256e-08	1.12

Loads

1. Fill Load: "Fill Load 1"

LabelFill Load 1Load TypeFlexibleArea of Load285100 ft2Elevation450 ftInstallation StageStage 1

Coordinates and Load

X [ft]	Ý [ft]	Load Magnitude [ksf]
2.39145e+06	6.97649e+06	0.335832
2.39157e+06	6.97659e+06	4.52717
2.39194e+06	6.97691e+06	11.4201
2.39222e+06	6.97701e+06	14.1123
2.39194e+06	6.97706e+06	11.329
2.39157e+06	6.97733e+06	3.70435
2.39145e+06	6.97742e+06	0.630962

2. Fill Load: "Fill Load 2"

LabelFill Load 2Load TypeFlexibleArea of Load800553 ft2Elevation450 ftInstallation StageStage 1

Coordinates and Load

X[ft]	Y [ft]	Load Magnitude [ksf]
2.39245e+06	6.97636e+06	0.630521
2.39247e+06	6.97648e+06	4.91819
2.39333e+06	6.97678e+06	12.9429
2.39344e+06	6.97684e+06	10.704
2.39308e+06	6.97709e+06	18.8364
2.39222e+06	6.97701e+06	14.1123
2.39194e+06	6.97691e+06	11.4201
2.39157e+06	6.97659e+06	4.52717
2.39145e+06	6.97649e+06	0.335832

3. Fill Load: "Fill Load 3"

LabelFill Load 3Load TypeFlexibleArea of Load343937 ft2Elevation450 ftInstallation StageStage 1

X [ft]	Y[ft]	Load Magnitude [ksf]
2.39335e+06	6.97623e+06	0.630521
2.39337e+06	6.97636e+06	4.92873
2.39327e+06	6.97638e+06	5.02688
2.39354e+06	6.97662e+06	9.78055
2.39344e+06	6,97684e+06	10.704
2.39333e+06	6.97678e+06	12.9429
2.39247e+06	6.97648e+06	4.91819
2.39245e+06	6.97636e+06	0.630521

4. Fill Load: "Fill Load 4"

Label Fill Load 4
Load Type Flexible

Area of Load 1.60006e+06 ft2

Elevation 450 ft
Installation Stage Stage 1

Coordinates and Load

X [ft]	Y[ft]	Load Magnitude [ksf]
2.39546e+06	6.97595e+06	0.30014
2.39487e+06	6.97611e+06	3.068
2.39484e+06	6.9766e+06	11.934
2.39488e+06	6.97704e+06	22.074
2.39489e+06	6.97726e+06	23.2239
2.39486e+06	6.97747e+06	21.918
2.3939e+06	6.97719e+06	21.4871
2.39344e+06	6.97684e+06	10.704
2.39354e+06	6.97662e+06	9.78055
2.39327e+06	6.97638e+06	5.02688
2.39337e+06	6.97636e+06	4.92873
2.39335e+06	6.97623e+06	0.630521

5. Fill Load: "Fill Load 5"

Label Fill Load 5 Load Type Flexible

Area of Load 1.71018e+06 ft2

Elevation 450 ft
Installation Stage Stage 1

X[ft]	Y [ft]	Load Magnitude [ksf]
2.39644e+06	6.97594e+06	0.685079
2.39623e+06	6.97607e+06	3.92674
2.39644e+06	6.97618e+06	3.38676
2.39568e+06	6.97693e+06	21.996
2.39561e+06	6.97771e+06	20.559
2.39486e+06	6.97747e+06	21.918
2.39489e+06	6.97726e+06	23.2239
2.39488e+06	6.97704e+06	22.074
2.39484e+06	6.9766e+06	11.934
2.39487e+06	6.97611e+06	3.068
2.39546e+06	6.97595e+06	0.30014

Fill Load 6

Flexible

6. Fill Load: "Fill Load 6"

Label Load Type Area of Load

Area of Load 1.08444e+06 ft2 Elevation 450 ft

Elevation 450 ft
Installation Stage Stage 1

Coordinates and Load

X [ft]	Y [tt]	Load Magnitude [ksf]
2.39736e+06	6.97595e+06	0.725122
2.39706e+06	6.97659e+06	13.307
2.39647e+06	6.9767e+06	16.5901
2.39625e+06	6.97694e+06	21.6715
2.39628e+06	6.97726e+06	19.5098
2.39606e+06	6.97725e+06	24.3901
2.39586e+06	6.97735e+06	24.2664
2.39561e+06	6.97771e+06	20.559
2.39568e+06	6.97693e+06	21.996
2.39644e+06	6.97618e+06	3.38676
2.39623e+06	6.97607e+06	3.92674
2.39644e+06	6.97594e+06	0.685079

7. Fill Load: "Fill Load 7"

LabelFill Load 7Load TypeFlexibleArea of Load552222 ft2Elevation450 ftInstallation StageStage 1

X[ft]	Y[ft]	Load Magnitude [ksf]
2.39853e+06	6.97601e+06	0.168
2.39831e+06	6.97617e+06	5.4555
2.39801e+06	6.97642e+06	0.186484
2.39765e+06	6.97647e+06	6.9561
2.39745e+06	6.97652e+06	11.123
2.39706e+06	6.97659e+06	13.307
2.39736e+06	6.97595e+06	0.725122
2.39773e+06	6.97593e+06	0.168

Fill Load 8 Flexible

450 ft

Stage 1

1.46984e+06 ft2

8. Fill Load: "Fill Load 8"

Label
Load Type
Area of Load
Elevation

Coordinates and Load

Installation Stage

X [ft]	Y[ft]	Load Magnitude [ksf]
2.39855e+06	6.97676e+06	0.168
2.39804e+06	6.97677e+06	5.6535
2.39715e+06	6.97743e+06	13.3042
2.39654e+06	6.97742e+06	16.2615
2.39628e+06	6.97726e+06	19.5098
2.39625e+06	6.97694e+06	21.6715
2.39647e+06	6.9767e+06	16.5901
2.39706e+06	6.97659e+06	13.307
2.39745e+06	6.97652e+06	11.123
2.39765e+06	6.97647e+06	6.9561
2.39801e+06	6.97642e+06	0.186484
2.39831e+06	6.97617e+06	5.4555
2.39853e+06	6.97601e+06	0.168

9. Fill Load: "Fill Load 9"

Label Fill Load 9
Load Type Flexible
Area of Load 511175 ft2
Elevation 450 ft
Installation Stage Stage 1

Coordinates and Load

X [ft]	Y [ft]	Load Magnitude [ksf]
2.39855e+06	6.97727e+06	0.168
2.39833e+06	6.97727e+06	0.168
2.39805e+06	6.97726e+06	0.168
2.39773e+06	6.9774e+06	7.3572
2.39755e+06	6.97741e+06	11.1375
2.39715e+06	6.97743e+06	13.3042
2.39804e+06	6.97677e+06	5.6535
2.39855e+06	6.97676e+06	0.168

10. Fill Load: "Fill Load 10"

IIIE-B-1-22 10/27

Label Load Type

Area of Load

Elevation Installation Stage Fill Load 10 Flexible

1.60369e+06 ft2

450 ft Stage 1

Coordinates and Load

X [ft]	Y [f6]	Load Magnitude [ksf]
2.39853e+06	6.978e+06	0.168
2.39809e+06	6.97799e+06	0.168
2.39764e+06	6.97826e+06	10.9448
2.39725e+06	6.97836e+06	12.9679
2.39663e+06	6.97825e+06	16.1279
2.39636e+06	6.97795e+06	22.191
2.39678e+06	6.97777e+06	15.257
2.39676e+06	6.97767e+06	15.6571
2.39654e+06	6.97742e+06	16.2615
2.39715e+06	6.97743e+06	13.3042
2.39755e+06	6.97741e+06	11.1375
2.39773e+06	6.9774e+06	7.3572
2.39805e+06	6.97726e+06	0.168
2.39833e+06	6.97727e+06	0.168
2.39855e+06	6.97727e+06	0.168

11. Fill Load: "Fill Load 11"

Label Load Type Area of Load Elevation Installation Stage Fill Load 11 Flexible 415755 ft2 450 ft Stage 1

Coordinates and Load

X [ft]	Y[ft]	Load Magnitude [ksf]
2.39853e+06	6.97894e+06	0.168
2.3983e+06	6.97868e+06	0.168
2.39804e+06	6.97842e+06	0.168
2.39778e+06	6.97832e+06	7.5582
2.39764e+06	6.97826e+06	10.9448
2.39809e+06	6.97799e+06	0.168
2.39853e+06	6.978e+06	0.168

12. Fill Load: "Fill Load 13"

Label Load Type Area of Load Fill Load 13 Flexible

Stage 1

Elevation

1.18118e+06 ft2 450 ft

Installation Stage

X[ft]	Y [ft]	Load Magnitude [ksf]
2.39745e+06	6.97904e+06	0.678481
2.39737e+06	6.97876e+06	4.8114
2.39647e+06	6.97865e+06	7.3842
2.3959e+06	6.97846e+06	6.05371
2.39587e+06	6.97801e+06	17.5958
2.39576e+06	6.9779e+06	18.865
2.39612e+06	6,97766e+06	23.4936
2.39654e+06	6.97742e+06	16.2615
2.39676e+06	6.97767e+06	15.6571
2.39678e+06	6.97777e+06	15.257
2.39636e+06	6.97795e+06	22.191
2.39663e+06	6.97825e+06	16.1279
2.39725e+06	6.97836e+06	12.9679
2.3977e+06	6.97861e+06	3.93267
2.39782e+06	6.97888e+06	0.258002

13. Fill Load: "Fill Load 12"

Label	Fill Load 12
Load Type	Flexible
Area of Load	410138 ft2
Elevation	450 ft
Installation Stage	Stage 1

Coordinates and Load

X [ft]	Y [ft]	Load Magnitude [ksf]
2.39796e+06	6.97902e+06	0.168
2.39782e+06	6.97888e+06	0.258002
2.3977e+06	6.97861e+06	3.93267
2.39725e+06	6.97836e+06	12.9679
2.39764e+06	6.97826e+06	10.9448
2.39778e+06	6.97832e+06	7.5582
2.39804e+06	6.97842e+06	0.168
2.3983e+06	6.97868e+06	0.168
2.39853e+06	6.97894e+06	0.168

14. Fill Load: "Fill Load 14"

Label	Fill Load 14
Load Type	Flexible
Area of Load	626514 ft2
Elevation	450 ft
Installation Stage	Stage 1

X [ft]	Y[ft]	Load Magnitude [ksf]
2.39579e+06	6.97887e+06	0.952199
2.39563e+06	6.97869e+06	3.13054
2.3959e+06	6.97846e+06	6.05371
2.39647e+06	6.97865e+06	7.3842
2.39737e+06	6.97876e+06	4.8114
2.39745e+06	6.97904e+06	0.678481
2.39641e+06	6.97905e+06	0.168

15. Fill Load: "Fill Load 15"

Label	Fill Load 15
Load Type	Flexible
Area of Load	986409 ft2
Elevation	450 ft
Installation Stage	Stage 1

Coordinates and Load

X [ft]	(n) Y	Load Magnitude [ksf]
2.39528e+06	6.97868e+06	0.616001
2.39484e+06	6.97812e+06	6.20901
2.39561e+06	6.97771e+06	20.559
2.39586e+06	6.97735e+06	24.2664
2.39606e+06	6.97725e+06	24.3901
2.39628e+06	6.97726e+06	19.5098
2.39654e+06	6.97742e+06	16.2615
2.39612e+06	6.97766e+06	23.4936
2.39576e+06	6.9779e+06	18.865
2.39587e+06	6.97801e+06	17.5958
2.3959e+06	6.97846e+06	6.05371
2.39563e+06	6.97869e+06	3.13054
2.39579e+06	6.97887e+06	0.952199

16. Fill Load: "Fill Load 16"

Label	Fill Load 16
Load Type	Flexible
Area of Load	747870 ft2
Elevation	4 50 ft
Installation Stage	Stage 1

Coordinates and Load

X [ft]	Y[ft]	Load Magnitude [ksf]
2.39436e+06	6.9784e+06	0.791998
2.39419e+06	6.97819e+06	2.33527
2.39444e+06	6.97785e+06	9.856
2.39486e+06	6.97747e+06	21.918
2.39561e+06	6.97771e+06	20.559
2.39484e+06	6.97812e+06	6.20901
2.39528e+06	6.97868e+06	0.616001

17. Fill Load: "Fill Load 17"

IIIE-B-1-25 13/27

Label Fill Load 17
Load Type Flexible
Area of Load 950700 ft2
Elevation 450 ft
Installation Stage Stage 1

Coordinates and Load

X [ft]	Y [ft]	Load Magnitude [ksf]
2.3934e+06	6.97812e+06	0.271761
2.39333e+06	6.97797e+06	3.08338
2.39359e+06	6.97761e+06	10.2375
2.3939e+06	6.97719e+06	21.4871
2.39486e+06	6.97747e+06	21.918
2.39444e+06	6.97785e+06	9.856
2.39419e+06	6.97819e+06	2.33527
2.39436e+06	6.9784e+06	0.791998

18. Fill Load: "Fill Load 18"

LabelFill Load 18Load TypeFlexibleArea of Load984840 ft2Elevation450 ftInstallation StageStage 1

Coordinates and Load

X [ft]	Y [ft]	Load Magnitude [ksf]
2.39224e+06	6.97769e+06	0.630521
2.39235e+06	6.97761e+06	3.445
2.39308e+06	6.97709e+06	18.8364
2.39344e+06	6.97684e+06	10.704
2.3939e+06	6.97719e+06	21.4871
2.39344e+06	6.97684e+06	10.704
2.3939e+06	6.97719e+06	21.4871
2.39359e+06	6.97761e+06	10.2375
2.39333e+06	6.97797e+06	3.08338
2.3934e+06	6.97812e+06	0.271761

19. Fill Load: "Fill Load 19"

LabelFill Load 19Load TypeFlexibleArea of Load597790 ft2Elevation450 ftInstallation StageStage 1

X [ft]	Y [ft]	Load Magnitude [ksf]
2.39145e+06	6.97742e+06	0.630962
2.39157e+06	6.97733e+06	3.70435
2.39194e+06	6.97706e+06	11.329
2.39222e+06	6.97701e+06	14.1123
2.39308e+06	6.97709e+06	18.8364
2.39235e+06	6.97761e+06	3.445
2.39224e+06	6.97769e+06	0.630521

Soil Layers

BH1 (B-109)

XY Location:		BH1 (B-109): (2.39137	e+06, 6.97576e+06)
Layer #	Туре	Thickness [ft]	Elevation [ft]
1	Α	0	450
2	В	0	450
3	С	0	450
4	D	0	450
5	C	0	450
6	D	0	450
7	C	0	450
8	D	0	450
9	С	0	450
10	D	0	450
11	E	100	450
		350 ft	

BH2 (B-110)

Y Location:			BH2 (B-110): (2.3915	56e+06, 6.97752e+06)
Layer #		Туре	Thickness [ft]	
	Α		0	450
	В		0	450
	С		0	450
	D		0	450
	С		0	450
	D		0	450
	С		0	450
	D		0	450
	С		0	450
0	D		0	450
1	E		100	450
			450	

BH3 (B-112R)

(Y Location:		BH3 (B-	-112R): (2.39225e+06, 6.97619e+06)
Layer #			ickness [ft] Elevation [ft]
	Α	0	450
2	В	0	450
3	С	4	450
1	D	0	446
5	C	0	446
5	D	0	446
7	С	0	446
3	D	0	446
)	С	0	446
10	D	0	446
1	Е	96	446
			450

BH4 (B-113R)

XY Location:			BH4 (B-113R)	: (2.39061e+06, 6.97679e+06	5)
Layer #		Туре	Thickne	ess [ft] Elevation	ft]
1	Α		0	450	-
2	В		0	450	
3	С		0	450	
4	D		0	450	
5	С		0	450	
6	D		0	450	
7	С		0	450	
8	D		0	450	
9	C		0	450	
10	D		0	450	
11	E		100	450	
			350	ft	

BH5 (B-116)

XY Location:			BH5 (B-116): (2.392286	e+06, 6.97709e+06)
Layer #		Туре	Thickness [ft]	Elevation [ft]
1	Α		0	450
2	В		0	450
3	С		9.6	450
4	D		0	440.4
5	C		0	440.4
6	D		0	440.4
7	C		0	440.4
8	D		0	440.4
9	С		0	440.4
10	D		0	440.4
11	Ε		90.4	440.4
			450	

BH6 (B-122)

(Y Location:			BH6 (B-122): (2.393326	e+06, 6.97788e+06)
Layer #		Туре	Thickness [ft]	Elevation [ft]
L	Α		0	450
	В		2.6	450
	С		5	447.4
	D		10	442.4
	С		11.5	432.4
	D		0	420.9
	С		0	420.9
	D		0	420.9
	С		0	420.9
0	D		0	420.9
1	E		70.9	420.9
			450 442.4 -432.4 -420.9	

BH6-B (B-122)

XY Location:	Y Location:		BH6-B (B-122): (2.39354e+06, 6.97795e+06)		
Layer #		Type	Thickness [ft]	Elevation [ft]	
1	Α		12.1	450	
2	В		10.5	437.9	
3	С		5	427.4	
4	D		10	422.4	
5	С		11.5	412.4	
6	D		0	400.9	
7	С		0	400.9	
8	D		0	400.9	
9	С		0	400.9	
10	D		0	400.9	
11	E		50.9	400.9	
			450 437.9 427.4 412.4 400.9		

BH7 (B-123R)

XY Location:		BH7 (B-123R): (2.3934	12e+06, 6.97717e+06)
Layer #	Туре	Thickness [ft]	Elevation [ft]
1	Α	0	450
2	В	0	450
3	C	16.5	450
1	D	3.8	433.5
5	C	0	429.7
	D	0	429.7
7	C	0	429.7
3	D	0	429.7
	С	0	429.7
10	D	0	429.7
11	E	79.7	429.7
		433.5	

BH7-B (B-123R)

XY Location:			BH7-B (B-123R): (2.393	357e+06, 6.97688e+06)
Layer #		Туре	Thickness [ft]	Elevation [ft]
1	Α		26.8	450
2	В		5	423.2
3	C		5	418.2
1	D		5	413.2
5	C		16.5	408.2
6	D		0	391.7
7	С		0	391.7
8	D		0	391.7
9	С		0	391.7
10	D		0	391.7
11	E		41.7	391.7
			450 423.2 413.2 	

BH8 (B-124)

20/27

(Y Location:		BH8 (B-124): (2.39)	345e+06, 6.97633e+06)
Layer #	Ту		
L	Α	0	450
2	В	0	450
3	С	19.5	450
1	D	0	430.5
5	С	0	430.5
5	D	0	430.5
7	С	0	430.5
3	D	0	430.5
	С	0	430.5
10	D	0	430.5
11	E	80.5	430.5
		430.5	

BH9 (B-131)

XY Location:	ocation:		BH9 (B-131): (2.396026	e+06, 6.97549e+06)
Layer #		Туре	Thickness [ft]	Elevation [ft]
1	Α		0	450
2	В		0	450
3	С		18.6	450
4	D		0	431.4
5	С		0	431.4
6	D		0	431.4
7	C		0	431.4
8	D		0	431.4
9	С		0	431.4
10	D		0	431.4
11	E		81.4	431.4
			450 431.4	

BH10 (B-11.1)

XY Location:			BH10 (B-11.1): (2.3968	8e+06, 6.97932e+06)
Layer #		Туре	Thickness [ft]	Elevation [ft]
1	Α		0	450
2	В		0	450
3	С		22.5	450
1	D		0	427.5
5	С		0	427.5
5	D		0	427.5
7	С		0	427.5
3	D		0	427.5
)	С		0	427.5
10	D		0	427.5
11	E		77.5	427.5

BH11 (B-11.3)

BH12 (B-11.4)

BH14 (B-11.7)

BH14-B (B-11.7)

XY Location:			BH14-B (B-11.7): (2.39	564e+06, 6.97624e+06)
Layer #		Туре	Thickness [ft]	Elevation [ft]
1	Α		3.5	450
2	В		7.9	446.5
3	С		11	438.6
4	D		2.5	427.6
5	С		32.5	425.1
6	D		0	392.6
7	С		0	392.6
8	D		0	392.6
9	С		0	392.6
10	D		0	392.6
11	E		42.6	392.6
			450 	

BH15 (B-11.8)

XY Location:		BH15 (B-11.8): (2.3958	se+06, 6.97761e+06)
Layer #	Туре	Thickness [ft]	Elevation [ft]
1	Α	0	450
2	В	4.9	450
3	C	6	445.1
4	D	2.5	439.1
5	C	1.5	436.6
6	D	1	435.1
7	C	7	434.1
8	D	1	427.1
9	С	6.5	426.1
10	D	2.1	419.6
11	E	67.5	417.5
		450 439.1 427.1 419.6	

BH15-B (B-11.8)

XY Location:			BH15-B (B-11.8): (2.39	541e+06, 6.97759e+06)
Layer #		Туре	Thickness [ft]	Elevation [ft]
1	Α		5.9	450
2	В		19	444.1
3	С		6	425.1
4	D		2.5	419.1
5	С		1.5	416.6
6	D		1	415.1
7	С		7	414.1
8	D		1	407.1
9	С		6.5	406.1
10	D		2.1	399.6
11	E		47.5	397.5
			425.1 425.1 419.1 407.1 399.6	

BH16 (B-11.9)

Y Location:		BH16 (B-11.9): (2.395	52e+06, 6.97895e+06)
Layer #	Туре	Thickness [ft]	Elevation [ft]
	Α	0	450
1	В	24.4	450
3	С	5.6	425.6
1	D	6	420
	C	0	414
5	D	0	414
,	С	0	414
3	D	0	414
)	C	0	414
.0	D	0	414
1	E	64	414
		450 425.6 -414	

BH16-B (B-11.9)

XY Location:			BH16-B (B-11.9): (2.39)	533e+06, 6.97859e+06)
Layer #		Туре	Thickness [ft]	Elevation [ft]
1	Α		29.4	450
2	В		35	420.6
3	С		5.6	385.6
•	D		6	380
5	С		0	374
5	D		0	374
•	C		0	374
3	D		0	374
	С		0	374
0	D		0	374
1	E		24	374
			450 420.6 385.6 374	

Soil Properties

Property	Α	В	С	D
Color				
Unit Weight [kips/ft3]	0.11	0.115	0.121	0.119
Saturated Unit Weight [kips/ft3]	0.132	0.133	0.137	0.13
K0	1	1	1	1
Immediate Settlement	Disabled	Disabled	Enabled	Enabled
Es [ksf]	-	-	6500	15000
Esur [ksf]	,	-	6500	15000
Primary Consolidation	Enabled	Enabled	Disabled	Disabled
Material Type	Non-Linear	Non-Linear		
Cc	0.11	0.11	-	- ,
Cr	0.012	0.012	-	- 1
e0	0.5	0.5		-
Pc [ksf]	4	4	<u>-</u> , 2	-
Undrained Su A [kips/ft2]	0	0	0	0
Undrained Su S	0.2	0.2	0.2	0.2
Undrained Su m	0.8	0.8	0.8	0.8
Piezo Line ID	1	1	1	1
Property				E
Color				
Unit Weight [kips/ft3]			0.128	
Saturated Unit Weight [kips/ft3]			0.142	
KO			1	
Immediate Settlement			Enabled	
Es [ksf]			15000	
Esur [ksf]			15000	
Undrained Su A [kips/ft2]			0	
Undrained Su S			0.2	
Undrained Su m			0.8	
Piezo Line ID			1	

APPENDIX IIIE-B-2 FINAL COVER SETTLEMENT ANALYSIS

Includes pages IIIE-B-2-1 through IIIE-B-2-12

DAVID E. POE

81734

SOINAL ENGINEERS

5-19-2022

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-B-2 SOLID WASTE AND FINAL COVER SETTLEMENT AND STRAIN

Chkd By: DEP Date: 12/20/2021

Required:

Determine the post-settlement slope of the final cover system and verify that the strain induced on the final cover due to settlement is within acceptable limits.

Method:

- A. Estimate primary settlement of waste below the final cover system.
- B. Estimate secondary settlement of waste below the final cover system.
- C. Estimate total settlement of waste below the final cover system.
- D. Verify that strain induced on the final cover due to settlement is within acceptable limits.

Description of Contents:

- Sheets IIIE-B-2-3 thru IIIE-B-2-8 present example calculations.
- Table 1 presents the final cover settlement point parameters. and analysis results.
- Table 2 presents the strain calculations along the evaluation lines.
- Sheet IIIE-B-2-9 presents the analysis conclusions.
- Sheet IIIE-B-2-12 provides the final cover analysis points and evaluation lines supporting the strain calculations.

References:

- 1. Sowers, George F., <u>Settlement of Solid Waste</u>, *Proceedings of the Eighth International Conference on Soil Mechanics and Foundations Engineering*, 1973.
- 2. Quian, Xuede, R.M. Koerner, D. H. Gray, <u>Geotechnical Aspects of Landfill Design and Construction</u>, Prentice-Hall, Inc., New Jersey, 2002.
- 3. Koerner, Robert M., <u>Designing with Geosynthetics</u>, Third Edition. Prentice-Hall, New Jersey, 1994.
- 4. Acar, Yalcin B. & Daniel, David E., Geoenvironment 2000 Characterization, Containment, Remediation, and Performance in Environmental Geotechnics, Volume 2, American Society of Civil Engineers, 1995.
- 5. Zornberg, Jorge G., et al., *Retention of Free Liquids in Landfills Undergoing* Vertical Expansion, Journal of Geotechnical and Geoenvironmental Engineering, July 1999.
- 6. Fassett, Jeffrey B., et al., <u>Geotechnical Properties of Municipal Solid Wastes and Their Use in Landfill Design</u>, Waste Tech, 1994.
- 7. SETTLE3, Version 5.009, Copyright 2008-2021, Rockscience Inc.
- 8. Beggs, Ian D. et al, <u>Assessment of Maximum Allowable Strains in Polyethylene and Polypropylene Geomembranes</u>, Geo-Frontiers Congress, Austin, TX, 2005.

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-B-2 SOLID WASTE AND FINAL COVER SETTLEMENT AND STRAIN

Chkd By: DEP Date: 12/20/2021

Solution:

A) Estimate primary settlement of waste below the final cover system.

MSW will undergo primary consolidation due to its own weight, final cover, equipment, etc. Primary consolidation occurs quickly, generally within the first month after loading. Therefore, the weight of the final cover system is the only remaining factor that contributes to primary consolidation. In addition, by the time the construction of the final cover is complete, settlement of the waste due to the weight of the final cover will be complete.

Primary settlement is calculated using the following equation:

$$S_{p} = \frac{H_{o}C_{c}}{1+e_{o}} log \left(\frac{\sigma'_{o} + \Delta \sigma}{\sigma'_{o}} \right)$$

 S_p = primary settlement, ft

 H_0 = waste thickness below the final cover system, ft

 C_c = compression index

 e_o = void ratio of the waste layer below final cover before settlement (i.e., before final cover placement)

 $\Delta \sigma$ = change in loading/increase in overburden pressure, psf

 σ'_{o} = overburden pressure acting at mid-height of refuse below the final cover, psf

For this site assume:

$$C_c = 0.35 \text{ x e}_o$$
 (Ref. 1, p. 210)

The compression index is a function of the void ratio. The compression index can range from C_c =0.15 e_o to C_c =0.55 e_o for fills that are low and high in organic content, respectively. An average compression index value was chosen because it is consistent with the types of waste accepted in the past. It is also representative of the minimal amount of settlement the site has experienced.

The average void ratio of waste below the final cover is estimated by determining the void ratio at the midpoint of the waste column below the final cover system. The void ratio is calculated for each settlement evaluation point using the following equation.

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-B-2 SOLID WASTE AND FINAL COVER SETTLEMENT AND STRAIN

Chkd By: DEP

Date: 12/20/2021

(Ref. 5, p. 590)

where:

 σ'_{0} = overburden pressure in kPa

 $e_0 = 1.86 - 0.00102 \,\sigma'_0$

$$\sigma'_{o} = 0.5 \; \gamma_{msw} \; H_{o} \\ \Delta \sigma = \gamma_{cov} \; T_{c} \label{eq:equation_signal}$$

 γ_{msw} = unit weight of waste below the final cover system, pcf

 γ_{cov} = unit weight of cover, pcf

 T_c = thickness of final cover system, ft

Parameters:

$$\gamma_{cov} = 120$$
 pcf
 $T_c = 4$ feet (See Note 1, below)
 $\gamma_{msw} = varies$ (see Note 2, below)

- Notes: 1. To value includes protective and final cover soils, intermediate cover, and grading soils
 - 2. The value γ_{msw} is selected based on the midpoint of the waste thicknesses below the final cover system using the Unit Weight Profile for Waste/Daily Cover within an MSW Landfill chart developed from Ref. 4.

Example Calculations:

A) Estimate primary settlement of waste below the final cover system.

The settlement points analyzed are shown on Sheet IIIE-B-2-14. An example calculation of the estimated primary settlement is shown below for Evaluation Points FC3 and FC4. The estimated primary settlement for all evaluation points is shown in Table 1.

At Evaluation Point FC3:

Top of Final Cover Elevation (ft-msl)= 740.0 Bottom of Waste Elevation (ft-msl)= 456.0

$$H_o = 280.0$$
 ft $\gamma_{msw} = 78.0$ pcf

$$\begin{split} \sigma'_o &= 0.5 \ \gamma_{msw} \ H_o \\ \sigma'_o &= 10918.7 \ psf \\ \sigma'_o &= 522.8 \ kPa \end{split}$$

$$e_0 = 1.86 - 0.00102 \, \sigma'_0$$

 $e_0 = 1.33$

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-B-2 SOLID WASTE AND FINAL COVER SETTLEMENT AND STRAIN

Chkd By: DEP Date: 12/20/2021

 $C_c = 0.35 e_o$ $C_c = 0.46$ $\Delta \sigma = 480.0 \quad \text{psf}$ $S_p = \frac{280 \times 0.46}{1 + 1.33} \log \left(\frac{10918.7 + 480}{10918.7} \right)$ $S_p = 1.0 \quad \text{ft}$

At Evaluation Point FC4:

Top of Final Cover Elevation (ft-msl)= 491.3 Bottom of Waste Elevation (ft-msl)= 476.0

$$H_{o} = 11.3$$
 ft

 $\gamma_{msw} = 43.0$ pcf

 $\sigma'_{o} = 0.5 \gamma_{msw} H_{o}$
 $\sigma'_{o} = 241.9$ psf

 $\sigma'_{o} = 11.6$ kPa

 $e_{o} = 1.86 - 0.00102 \sigma'_{o}$
 $e_{o} = 1.85$
 $C_{c} = 0.35 e_{o}$
 $C_{c} = 0.65$
 $\Delta \sigma = 480.0$ psf

 $S_{p} = \frac{11.3 \times 0.65}{1 + 1.85} \log \left(\frac{241.9 + 480}{241.9}\right)$
 $S_{p} = 1.2$ ft

B) Estimate secondary settlement of waste below the final cover system.

Secondary consolidation continues at substantial rates for periods of time well beyond primary settlement. It is a combination of mechanical secondary compression, physico-chemical reaction, and bio-chemical decay. The settlement-log time relationship is similar to secondary compression of soils and can be expressed by:

$$S_c = \frac{H'_o \alpha}{1 + e'_o} \log(t_2/t_1)$$
 (Ref. 2, p. 451)

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-B-2 SOLID WASTE AND FINAL COVER SETTLEMENT AND STRAIN

Chkd By: DEP Date: 12/20/2021

Parameters:

 S_c = secondary settlement, ft

 α = secondary compression index

e'₀ = void ratio of the waste layer below the final cover after primary settlement has occurred due to the final cover

H'_o = waste thickness below the final cover system after settlement, ft

 t_1 = starting time of secondary settlement in years

 t_2 = time at which settlement is determined in years

For this site assume:

$$\alpha = 0.03 \text{ x e'}_{0}$$
 (Ref. 1, p. 210)

As reported by Sowers (Ref. 1), the secondary compression index is used to estimate waste decomposition. The secondary compression index ranges from $\alpha = 0.03e'_0$ to $\alpha = 0.09e'_0$ for conditions that are unfavorable and favorable to decay, respectively. An average secondary compression index value was chosen because it is consistent with the types of waste accepted in the past. It is also representative of the minimal amount of settlement the site has experienced.

The void ratio of the waste below the final cover at closure is a function of the overburden pressure caused by placement of the final cover system. The void ratio is calculated for each settlement evaluation point using the following equation.

$$e'_{0} = 1.86 - 0.00102 \sigma''_{0}$$
 (Ref. 5, p. 590)

where:

 σ''_{0} = overburden pressure in kPa

$$\sigma''_{o} = 0.5 \gamma'_{msw} H'_{o}$$

 γ'_{msw} = unit weight of waste below the final cover after primary settlement has occurred, pcf

For this site, the void ratio after primary settlement for the waste/cover soils below the final cover system varies between 1.5 to 1.9. Therefore, the secondary compression index will range between 0.09 to 0.11. Most literature sources report the secondary compression index in terms of the "modified secondary compression index" (Refs. 2, 6). The modified secondary compression index is defined by the following equation:

$$C'_{\alpha} = \frac{\alpha}{1 + e'_{o}}$$

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-B-2 SOLID WASTE AND FINAL COVER SETTLEMENT AND STRAIN

Chkd By: DEP Date: 12/20/2021

The secondary compression index calculated for this site translates to a modified secondary compression index of 0.03 to 0.04 (for a void ratio of 1.5 to 1.9). These values are consistent with reported values for the modified secondary compression index which vary from 0.03 to 0.1 (Refs. 2, 6).

Time frame used for this analysis:

$$t_1 = 0.083$$
 years
 $t_2 = 30.0$ years (postclosure period)

An example calculation of the estimated secondary settlement using the above secondary settlement period is shown below for Evaluation Points FC3 and FC4. The estimated secondary settlement for all evaluation points is shown in Table 1.

At Evaluation Point FC3:

$$H'_{o} = H_{o} - S_{p}$$
 $H_{o}' = 279.0$ ft

 $\sigma''_{o} = 0.5 \, \gamma'_{msw} \, H'_{o}$
 $\gamma'_{msw} = 77.0$ pcf

 $\sigma''_{o} = 10740.2$ psf

 $\sigma''_{o} = 514.3$ kPa

 $e'_{o} = 1.86 - 0.00102 \, \sigma''_{o}$
 $e'_{o} = 1.34$
 $\alpha = 0.03 \, e'_{o}$
 $\alpha = 0.04$
 $S_{c} = \frac{H'_{o} \, \alpha}{1 + e'_{o}} \log (t_{2}/t_{1})$
 $S_{c} = \frac{279.0 \times 0.04}{1 + 1.34} \log \left(\frac{30}{0.083}\right)$
 $S_{c} = 12.2$ ft

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-B-2 SOLID WASTE AND FINAL COVER SETTLEMENT AND STRAIN

Chkd By: DEP Date: 12/20/2021

At Evaluation Point FC4:

$$H'_{o} = H_{o} - S_{p}$$
 $H_{o}' = 10.1$ ft

 $\sigma''_{o} = 0.5 \, \gamma'_{msw} \, H'_{o}$
 $\gamma'_{msw} = 79.0$ pcf
 $\sigma''_{o} = 397.1$ psf
 $\sigma''_{o} = 19.0$ kPa

 $e'_{o} = 1.86 - 0.00102 \, \sigma''_{o}$
 $e'_{o} = 1.84$
 $\alpha = 0.03 \, e'_{o}$
 $\alpha = 0.06$
 $S_{c} = \frac{H'_{o} \, \alpha}{1 + e'_{o}} \log (t_{2}/t_{1})$
 $S_{c} = \frac{10.1 \times 0.06}{1 + 1.84} \log \left(\frac{30}{0.083}\right)$
 $S_{c} = 0.5$ ft

C) Estimate total settlement of waste below the final cover system.

Total settlement is the combination of primary and secondary settlement. An example calculation of the estimated total settlement is shown below for Evaluation Points FC3 and FC4. The estimated total settlement for all evaluation points is shown in Table 1.

At.	Eva.	luatic	n P	oint	FC3:
2000	of	wooto		lumr	· + -

Thickness of waste column, ft =	280.0	Primary Settlement =	1.0	ft
		Secondary Settlement =	12.2	ft
		Total Settlement =	13.2	ft
At Evaluation Point FC4:				
Thickness of waste column, ft=	11.3	Primary Settlement =	1.2	ft
		Secondary Settlement =	0.5	ft
		Total Settlement =	1.7	ft

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-B-2 SOLID WASTE AND FINAL COVER SETTLEMENT AND STRAIN

Chkd By: DEP

Date: 12/20/2021

D) Verify that strain induced on the final cover due to settlement is within acceptable limits.

Determine the post-settlement slope of the final cover system and verify the strain induced on the geocomposite due to settlement is within acceptable limits.

Note that negative values indicate the components are in compression.

Strain =
$$\frac{L_f - L_o}{L_o} x 100$$
 (Reference 2, Page 472)

L_f= Final distance between evaluation points after total settlement (ft) L_o = Initial distance between evaluation points before total settlement (ft)

An example calculation of the estimated strain is shown below for Evaluation Points FC3 and FC4. The estimated strain for all evaluation points is shown in Table 2.

Evaluation Point FC3 to Evaluation Point FC4:

Initial Distance:

Evaluation Point FC3 Elev. =	740.0 ft-msl
Evaluation Point FC4 Elev. =	491.3 ft-msl
Plan View Distance=	994.9 ft
$L_{o}=$	1025.5 ft

Total Settlement:

Total Settlement Point 1=	13.2	ft
Total Settlement Point 2=	1.7	ft

Final Distance (after settlement):

Evaluation Point 1 Elev. =		726.8	ft-msl
Evaluation Point 2 Elev. =	ů.	489.6	ft-msl
Plan View Distance=		994.9	ft
L_{f} =		1022.8	ft

Strain= -0.27%

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-B-2 SOLID WASTE AND FINAL COVER SETTLEMENT AND STRAIN

Chkd By: DEP Date: 12/20/2021

Conclusions:

Strain is acceptable.

- Compacted clay component of final cover has the smallest average allowable tensile strain value which is 0.5 percent (Reference 2, Page 469).
- The allowable tensile strain for an LDPE and LLDPE geomembrane is 8 to 12 percent (Reference 8).
- The allowable tensile strain for a drainage geocomposite is more than 20 percent for the geotextile (reference 3, page 112) and 200 percent for the geonet (reference 3, page 400).
- The maximum calculated strain (-0.27%) represents compression versus tensile strain and is acceptable, therefore the system will be stable. No tensile strain was observed in the analysis results.

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-B-2 FINAL COVER SETTLEMENT SUMMARY

TABLE 1. FINAL COVER EVALUATION - SETTLEMENT SUMMARY²

Post-Settlement Top of Final Cover Elevation (ft-msl)	727.0	746.2	726.8	489.6	726.6	726.7	489.4	668.8	619.9
Total Settlement (ft)	13.0	13.8	13.2	1.7	13.1	13.5	1.8	11.1	9.6
S _e (ft)	11.9	12.8	12.2	0.5	12.1	12.5	0.5	6.6	7.7
σ	0.04	0.04	0.04	90.0	0.04	0.04	90.0	0.04	0.05
-°.	1.35	1.29	1.33	1.85	1.33	1.31	1.85	1.48	1.60
σ" ₀ (psf)	10,430.2	11,652.5	1.678,01	216.1	0.608,01	11,183.2	235.3	1,868.1	5,376.0
γ' _{msw} (pcf)	77.0	79.0	78.0	43.0	78.0	78.0	43.0	73.0	0.99
H.°.	270.9	295.0	279.0	10.1	277.2	286.7	6'01	215.6	162.9
S _p (ff)	1.1	1.0	1.0	1.2	1.0	1.0	1.3	1.2	1.3
ပိ	0.47	0.45	0.46	9.0	0.47	0.46	9.65	0.52	0.56
မိ	1.35	1.29	1.33	1.85	1.33	1.31	1.85	1.47	1.60
Δσ (psf)	480.0	480.0	480.0	480.0	480.0	480.0	480.0	480.0	480.0
σ', (pst)	10,472.6	11,692.0	10,918.7	241.9	10,848.0	11,222.2	263.2	7,911.9	5,418.9
Y _{msw} (pcf)	77.0	79.0	78.0	43.0	78.0	78.0	43.0	73.0	66.0
H _o (ft)	272.0	296.0	280.0	11.3	278.2	287.7	12.2	216.8	164.2
Bottom of Waste Elevation (ft-msl)	464.0	460.0	456.0	476.0	457.5	448.4	475.0	459.1	460.7
Initial Top of Waste Elevation (ft-msl)	736.0	756.0	736.0	487.3	735.7	736.2	487.2	675.9	624.9
Initial Top of Final Cover Elevation (ft-msl)	740.0	760.0	740.0	491.3	739.7	740.2	491.2	6.679	628.9
Evaluation Point ¹	FC1	FC2	FC3	FC4	FCS	FC6	FC7	FC8	FC9

¹ Refer to Sheet IIIE-B-2-12 for Evaluation Point locations (FC1 thru FC9).

²Settlement calculations in above table rounded to one significant figure.

CITY OF ARLINGTON LANDFILL 0023-404-11-102

Prep By: MB Date: 12/20/2021

APPENDIX IIIE-B-2 FINAL COVER SYSTEM GRADES AND STRAIN SUMMARY

TABLE 2. FINAL COVER EVALUATION - FINAL GRADES AND STRAIN SUMMARY

Tensile Strain (%)		0.00	-0.27	0.00	-0.27	-0.01
Post-Settlement Slope (ft/ft)		-0.01	0.24	0.02	0.24	0.05
Initial Slope (ft/ft)		-0.01	0.25	0.02	0.25	0.05
(ff)		1,847.8	1,022.8	871.1	1,027.6	1,003.6
L _o (ff)		1,847.8	1,025.5	871.1	1,030.4	1,003.7
Plan View Distance (ft)	Plan View Distance (ft)					1,002.4
Post-Settlement Top of Final Cover Elevation (ft-msl)	В	746.2	489.6	726.6	489.4	616.9
Post-Settler Final Cove (ft-1	Ą	727.0	726.8	746.2	726.7	8.899
Initial Top of Final Cover Final Elevation (ff-msl)	В	760.0	491.3	739.7	491.2	628.9
Initial Top o Elev (ft-1	A	740.0	740.0	0.097	740.2	6.619
Evaluation Point ¹	В	FC2	FC4	FC5	FC7	FC9
Evaluati	A	FCI	FC3	FC2	FC6	FC8

Refer to Sheet IIIE-B-2-12 for Evaluation Point locations. The "A" and "B" points represent the upgradient and downgradient endpoints, respectively.

APPENDIX IIIE-B-3 OVERLINER SETTLEMENT AND STRAIN ANALYSIS

Includes pages IIIE-B-3-1 through IIIE-B-3-30

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-B-3

Chkd By: DEP Date: 1/27/2022

OVERLINER SYSTEM SETTLEMENT AND STRAIN

Required:

Determine the post-settlement slope of the overliner system and verify that the strain induced on the overliner system components due to settlement is within acceptable limits. The post-settlement slope is also used to support the leachate collection system design included in Appendix IIIC.

Procedure:

- A. Estimate the settlement of the foundation soils.
- B. Estimate primary settlement of waste below the overliner system.
- C. Estimate secondary settlement of waste below the overliner system.
- D. Estimate total settlement of waste below the overliner system.
- E. Determine the post-settlement slope of the overliner system, and verify that strain induced on the overliner system components due to settlement is within acceptable limits.
- F. Determine the post-settlement slope of the leachate collection system pipe.

Notes:

- 1. Sheets IIIE-B-3-2 through IIIE-B-3-8 present the analysis method for the overliner settlement analysis.
- 2. Sheets IIIE-B-3-9 through III-B-3-12 (Table IIIE-B-3-1) presents the tabulation of the evaluation point settlement analyses.
- 3. Sheet IIIE-B-3-13 through IIIE-B-3-14 presents the analysis method for overliner post-settlement slope and strain.
- 4. Sheet IIIE-B-3-15 (Tables IIIE-B-3-2 and IIIE-B-3-3) presents the post-settlement slope and strain calculations.
- 5. Sheets IIIE-B-3-16 through IIIE-B-3-19 present the leachate pipe evaluation points settlement calculations.
- 6. Sheets IIIE-B-3-20 and IIIE-B-3-21 present the leachate pipe post-settlement slope calculations.
- 7. Sheet IIIE-B-3-22 presents the settlement analysis Evaluation Point Locations.
- 8. Sheet IIIE-B-3-23 presents the post-settlement total settlement at the evaluation points.
- 9. Sheet IIIE-B-3-24 presents the post-settlement overliner contours.
- 10. Sheet IIIE-B-3-25 presents the overliner post-settlement slope and strain evaluation points.
- 11. Sheet IIIE-B-3-26 presents the overliner leachate pipe layout and evaluation point locations.
- 12. Sheets IIIE-B-3-27 through IIIE-B-3-30 present the post-settlement leachate pipe profiles.

References:

- 1. Sowers, George F., *Settlement of Solid Waste*, Proceedings of the Eighth International Conference on Soil Mechanics and Foundations Engineering, 1973.
- 2. Qian, Xuede, R.M. Koerner, D. H. Gray, <u>Geotechnical Aspects of Landfill Design and Construction</u>, Prentice-Hall, Inc., New Jersey, 2002.
- 3. Koerner, Robert M., Designing with Geosynthetics, Fifth Edition. Prentice-Hall, New Jersey, 2005.
- 4. Acar, Yalcin B. & Daniel, David E., Geoenvironment 2000 Characterization, Containment, Remediation, and Performance in Environmental Geotechnics, Volume 2, American Society of Civil Engineers. 1995.
- 5. Zornberg, Jorge G., et al., *Retention of Free Liquids in Landfills Undergoing Vertical Expansion*, Journal of Geotechnical and Geoenvironmental Engineering, July 1999.
- 6. Fassett, Jeffrey B., et al., <u>Geotechnical Properties of Municipal Solid Wastes and Their Use in Landfill Design</u>, Waste Tech, 1994.
- 7. Beggs, Ian D. et al, <u>Assessment of Maximum Allowable Strains in Polyethylene and Polypropylene Geomembranes</u>, Geo-Frontiers Congress, Austin, TX, 2005.

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-B-3 OVERLINER SYSTEM SETTLEMENT AND STRAIN

Chkd By: DEP Date: 1/27/2022

Solution:

A. Establish Settlement Grid Across the Overliner Area.

The initial step for the settlement analysis is to establish an analysis grid for the overliner area. The settlement analysis has been performed for each grid point location (as presented in Table IIIE-B-3-1). The settlement of the overliner will include the settlement that occurs within the waste mass located between the overliner and the bottom of the pre-Subtitle D area. For this analysis, and based on shale being the primary foundation stratum existing under the overliner area, settlement of the foundation soils is assumed deminimus (in comparison to the calculated settlement within the waste mass under loading), and has been disregarded for this analysis.

The grid used for this settlement analysis is shown on Sheet IIIE-B-3-22. The total settlement values are shown on Sheet IIIE-B-3-23.

B. Estimate primary settlement of waste below the overliner system.

MSW below the overliner system will undergo primary consolidation due to its own weight, the weight of MSW placed in the pre-Subtitle D area above the overliner system, the overliner and final cover, equipment, etc. Primary consolidation occurs quickly, generally within the first month after loading. Therefore, the weight of the MSW placed above the overliner system, the overliner system, and the final cover system are the main factors that contribute to primary consolidation.

Primary settlement is calculated using the following equation:

$$S_{p} = \frac{H_{o}C_{c}}{1 + e_{o}} log \left(\frac{\sigma'_{o} + \Delta\sigma}{\sigma'_{o}}\right)$$

 $S_p = primary settlement, ft$

 H_0 = waste thickness below the overliner system, ft

 C_c = compression index

e_o = average void ratio of the waste layer below overliner before settlement (i.e., before waste/cover soils are placed above the overliner)

 $\Delta \sigma$ = change in loading/increase in overburden pressure, psf

 σ'_{0} = overburden pressure acting at mid-height of refuse below the overliner, psf

For this site assume:

 $C_c = 0.35 \text{ x e}_o$ (Ref. 1, p. 210)

The compression index is a function of the void ratio. The compression index can range from C_c=0.15e_o to C_c=0.55e_o for fills that are low and high in organic content, respectively. Final cover was placed over the WDA in 1999. Construction of the overliner began in 2021, approximately 22 years after waste was received in the WDA. A significant amount of waste decomposition will have occurred during this period; therefore, the compression index will likely be relatively low. However, an average value is used to provide a conservative analysis.

Chkd By: DEP Date: 1/24/2022

OVERLINER SYSTEM SETTLEMENT AND STRAIN

The average void ratio of waste below the overliner is estimated by determining the void ratio at the midpoint of the waste column below the overliner. The void ratio is calculated for each settlement evaluation point using the following equation.

$$e_0 = 1.86 - 0.00102 \,\sigma'_0$$
 (Ref. 5, p. 590)

where:

 σ'_{0} = overburden pressure in kPa

$$\sigma'_o = 0.5 \; \gamma_{mswb} \; H_o$$

$$\Delta \sigma = \gamma_{cov} T_{c+\gamma_{mswa}} T_{waste} + \gamma_{cov} T_{p} + \gamma_{cov} T_{s}$$

 $\gamma_{\text{mswb}} = \text{unit}$ weight of waste below the overliner system, pcf

 γ_{mswa} = unit weight of waste above the overliner system, pcf

 γ_{cov} = unit weight of cover (for final cover, overliner protective cover, overliner subgrade), pcf

 T_{waste} = waste thickness below the final cover system and above the overliner system, ft

 T_c = thickness of final cover system, ft

 T_p = thickness of overliner protective cover, ft

 T_s = thickness of soil subgrade for overliner, ft

Parameters:

$$\gamma_{cov} = 115$$
 pcf
 $T_c = 1.0$ ft
 $T_p = 2.0$ ft
 $T_s = 1.0$ ft

 γ_{mswb} = varies (see note below)

 $\gamma_{\text{mswa}} = \text{varies (see note below)}$

Note: γ_{mswb} and γ_{mswa} are selected based on the average waste thicknesses lying below and above the overliner system, respectively, using the Unit Weight Profile for Waste/Daily Cover within an MSW Landfill chart from Ref. 4 (reproduced below). Assigning a different unit weight value to each waste column provides a conservative analysis with regards to differential settlement.

An example calculation of the estimated primary settlement is shown below for Evaluation Points 95 and 96. The estimated primary settlement for all evaluation points is shown on Sheets IIIE-B-3-9 through IIIE-B-3-12 (Table IIIE-B-3-1).

Chkd By: DEP Date: 1/23/2022

OVERLINER SYSTEM SETTLEMENT AND STRAIN

At Evaluation Point 96:

Top of Waste Elev. (ft-msl) = 709.0

Top of Overliner Protective Cover Elev. (ft-msl) = 509.8

Top of Waste Below Overliner Elev. (ft-msl) = 506.8

Bottom of Waste Elev. (ft-msl) = 459.8

 $H_0 = \text{Top of Waste Below Overliner Elev.} - \text{Bottom of Waste Elev.}$

$$= 47.0 ft$$

$$\gamma_{\text{mswb}} = 48.0 pcf$$

 T_{waste} = Top of Waste Elev. - Top of Overliner Protective Cover Elev.

$$= 199.2 ft \gamma_{mswa} = 70.9 pcf$$

$$\sigma'_{o} = 0.5 \gamma_{mswb} H_{o}$$
 $\sigma'_{o} = 1128.7$ psf
 $\sigma'_{o} = 54.0$ kPa

$$e_o = 1.86 - 0.00102 \sigma'_o$$

 $e_o = 1.8$

$$C_c = 0.35 e_o$$
 $C_c = 0.63$

$$\Delta \sigma = 14570.9$$
 psf

$$S_P = \frac{(47 \times 0.63)}{(1 \times 0.18)} \log \left(\frac{(1128.7 + 14570.9)}{1128.7} \right)$$

$$S_{p} = 12.1$$
 ft

At Evaluation Point 95:

Top of Waste Elev. (ft-msl) = 702.3

Top of Overliner Protective Cover Elev. (ft-msl) = 509.3

Top of Waste Below Overliner Elev. (ft-msl) = 506.3

(i.e., top of waste elevation below overliner system)

Bottom of Waste Elev. (ft-msl) = 459.6

 H_o = Top of Waste Below Overliner Elev. - Bottom of Waste Elev.

$$\begin{array}{ccc} = & 46.7 & \text{ft} \\ \gamma_{\text{mswb}} = & 48.0 & \text{pcf} \end{array}$$

 T_{waste} = Top of Waste Elev. - Top of Overliner Protective Cover Elev.

$$\gamma_{\text{mswa}} = 70.0 \text{ pcf}$$

Chkd By: DEP Date: 1/27/2022

OVERLINER SYSTEM SETTLEMENT AND STRAIN

$$\sigma'_{o} = 0.5 \, \gamma_{\text{mswb}} \, H_{o}$$
 $\sigma'_{o} = 1121.9 \, \text{psf}$
 $\sigma'_{o} = 53.7 \, \text{kPa}$
 $e_{o} = 1.86 - 0.00102 \, \sigma'_{o}$
 $e_{o} = 1.8$
 $C_{c} = 0.35 \, e_{o}$
 $C_{c} = 0.63$
 $\Delta \sigma = 13980.2 \, \text{psf}$
 $S_{P} = \frac{(46.7 \times 0.63)}{(1 \times 0.18)} \log \left(\frac{(1121.9 + 13980.2)}{1121.9} \right)$
 $S_{p} = 11.9 \, \text{ft}$

C. Estimate secondary settlement of waste below the overliner system.

Secondary consolidation continues at substantial rates for periods of time well beyond primary settlement. It is a combination of mechanical secondary compression, physico-chemical reaction, and bio-chemical decay. Secondary settlement is calculated using the following expression:

$$S_c = \frac{H'_o \alpha}{1 + e'_o} \log(t_2/t_1)$$
 (Ref. 2, p. 451)

Parameters:

 S_c = secondary settlement, ft

 α = secondary compression index

e'_o = average void ratio of waste layer below the overliner after primary settlement has occurred due to the filling of waste/cover soils above the overliner

H'_o = waste thickness below the overliner system and above the bottom of waste after primary settlement, ft

 t_1 = starting time of secondary settlement in years

 t_2 = time at which settlement is determined in years

For this site assume:

$$\alpha = 0.06 \text{ x e'}_{0}$$
 (Ref. 1, p. 210)

As reported by Sowers (Ref. 1), the secondary compression index is used to estimate waste decomposition. The secondary compression index ranges from $\alpha=0.03e'_{o}$ to $\alpha=0.09e'_{o}$ for conditions that are unfavorable and favorable to decay, respectively. An average secondary compression index value was chosen to provide a conservative analysis. As noted in Step B, a significant amount of waste decomposition will have occurred between closure of the WDA and overliner construction. Therefore, the secondary compression index will likely be relatively low. However, an average value is used to provide a conservative analysis.

Chkd By: DEP Date: 1/23/2022

OVERLINER SYSTEM SETTLEMENT AND STRAIN

The void ratio below the overliner at closure is a function of the overburden pressure caused by waste/cover soil and the final cover system located above the overliner. The void ratio is calculated for each settlement evaluation point using the following equation.

$$e'_{o} = 1.86 - 0.00102 \sigma''_{o}$$
 (Ref. 5, p. 590)

where:

 σ''_{0} = overburden pressure in kPa

$$\sigma''_{o} = 0.5 \gamma'_{mswb} H'_{o}$$

 γ'_{mswb} = unit weight of waste below the overliner after primary settlement has occurred due to the filling of waste/cover soils above the overliner, pcf

For this site, the void ratio after primary settlement for the waste/cover soils below the overliner varies between 1.8 to 1.9. Therefore, the secondary compression index will be approximately 0.11. Most literature sources report the secondary compression index in terms of the "modified secondary compression index" (Refs. 2, 6). The modified secondary compression index is defined by the following.

$$C'_{\alpha} = \frac{\alpha}{1 + e'_{o}}$$

The secondary compression index calculated for this site translates to a modified secondary compression index of 0.04 (for a void ratio of 1.8 to 1.9). These values are consistent with reported values for the modified secondary compression index which vary from 0.03 to 0.1 (Refs. 2, 6).

Time frame used for this analysis:

$$t_1 =$$
 22 years (see note below)
 $t_2 =$ 100 years (see note below)

The time represented by t_1 is the time from when the WDA was closed until the time of first placement of waste in the overliner area. The site life calculated is approximately 33 years. However, to provide a conservative approach, the time, t_2 , at which settlement is determined was chosen to be 100 years.

An example calculation of the estimated secondary settlement using the above secondary settlement period is shown below for Evaluation Points 95 and 96. The estimated secondary settlement for all evaluation points is shown on Sheets IIIE-B-3-9 through IIIE-B-3-12.

At Evaluation Point 96:

$$H'_{o} = H_{o} - S_{p}$$

 $H_{o}' = 34.9$ ft

$$\sigma''_{o} = 0.5 \, \gamma'_{mswb} \, H'_{o}$$
 $\gamma'_{mswb} = 81.6 \, pcf$
 $\sigma''_{o} = 1423.5 \, psf$
 $\sigma''_{o} = 68.2 \, kPa$

$$e'_{o} = 1.86 - 0.00102 \sigma''_{o}$$

 $e'_{o} = 1.8$

Chkd By: DEP Date: 1/27/2022

OVERLINER SYSTEM SETTLEMENT AND STRAIN

$$\alpha = 0.06 e'_{o}$$

$$\alpha = 0.11$$

$$S_{c} = \frac{H'_{o} \alpha}{1 + e'_{o}} \log (t_{2}/t_{1})$$

$$S_{c} = \frac{34.9 \times 0.11}{1 + 1.8} \log (100/22)$$

$$S_{c} = 0.9 \quad \text{ft}$$

At Evaluation Point 95:

$$\begin{split} H'_o &= H_o \cdot S_p \\ H_o' &= 34.8 \quad \text{ft} \\ \sigma''_o &= 0.5 \, \gamma'_{\text{mswb}} \, H'_o \\ \gamma'_{\text{mswb}} &= 81.4 \quad \text{pcf} \\ \sigma''_o &= 1418.5 \quad \text{psf} \\ \sigma''_o &= 67.9 \quad \text{kPa} \\ e'_o &= 1.86 \cdot 0.00102 \, \sigma''_o \\ e'_o &= 1.8 \\ \alpha &= 0.06 \, e'_o \\ \alpha &= 0.11 \\ S_c &= \frac{H'_o \, \alpha}{1 + e'_o} \, \log \left(t_2/t_1 \right) \\ S_c &= \frac{34.8 \times 0.11}{1 + 1.8} \, \log \left(100/22 \right) \\ S_c &= 0.9 \quad \text{ft} \end{split}$$

D. Estimate total settlement of waste below the overliner system.

Total settlement is the combination of primary and secondary. Total settlement of the overliner is shown on Sheet IIIE-B-3-23. An example calculation of the estimated total settlement is shown below for Evaluation Points 95 and 96. The estimated total settlement for all evaluation points is shown on Sheets IIIE-B-3-9 through IIIE-B-3-12.

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-B-3 OVERLINER SYSTEM SETTLEMENT AND STRAIN

Chkd By: DEP Date: 1/27/2022

At Evaluation Point 96:	
Thickness of waste column, $ft = 47.0$	Primary Settlement = Secondary Settlement =
	Total Settlement =

Total Settlement = 13.0 ft

12.1 ft

0.9 ft

11.9 ft

0.9 ft

At Evaluation Point 95:
Thickness of waste column, ft = 46.7

Primary Settlement = Secondary Settlement =

Total Settlement = 12.8 ft

The above calculations are representative of the calculations performed for the overliner, as presented in Table IIIE-B-3-1. The settlement information for the individual evaluation points were used to devevelop the post-settlement contour map presented in Sheet IIIE-B-3-24.

Chkd By: DEP Date: 1/27/2022

TABLE IIIE-B-3-1. OVERLINER SYSTEM SETTLEMENT SUMMARY

Evaluation Point	Top of Waste Elevation (ft-msl)	Initial Top of Overliner Elevation (ft-msl)	Initial Top of Waste Below Overliner Elevation (ft-msl)	Bottom of Waste Elevation (ft-msl)	H _o (ft)	T _{waste} (ft)	γ _{mswb} (pcf)	γ _{mswa} (pcf)	o'o (psf)	Δσ (psf)	e _o	C _e	S _p (ft)	H' _o (ft)	γ' _{mswb} (pcf)	σ" _o (psf)	e'o	α	S _e (ft)	Total Settlement (ft)	Post-Settlement Top of Overliner Elevation (ft-msl)	
1	516.9	485.7	484.3	485.3	0.0	0.0	42.0	42.0	0.0	460.0	1.9	0.65	0.0	0.0	42.0	0.0	1.9	0.11	0.0	0.0	485.7	484.3
2	573.2	479.8	481.5	453.4	0.0	0.0	42.0	42.0	0.0	460.0	1.9	0.65	0.0	0.0	42.0	0.0	1.9	0.11	0.0	0.0	479.8	481.5
3	617.9	478.9	481.2	453.4	0.0	0.0	42.0	42.0	0.0	460.0	1.9	0.65	0.0	0.0	42.0	0.0	1.9	0.11	0.0	0.0	478.9	481.2
<u>4</u>	675.5	478.1	480.9	453.4	0.0	0.0	42.0	42.0	0.0	460.0	1.9	0.65	0.0	0.0	42.0	0.0	1.9	0.11	0.0	0.0	478.1	480.9
6	724.4 745.5	477.1 474.6	480.5 479.0	453.4 456.0	0.0	0.0	42.0 44.9	42.0 42.0	0.0	460.0 460.0	1.9 1.9	0.65	0.0	0.0	42.0 42.0	0.0	1.9	0.11	0.0	0.0	477.1 474.6	480.5 479.0
7	756.0	474.0	479.0	453.4	0.0	0.0	45.2	42.0	0.0	460.0	1.9	0.65	0.0	0.0	42.0	0.0	1.9	0.11	0.0	0.0	474.0	479.0
8	752.2	471.2	479.0	454.4	0.0	279.0	44.9	42.0	0.0	12168.4	1.9	0.65	0.0	0.0	42.0	0.0	1.9	0.11	0.0	0.0	471.2	479.0
9	512.3	502.7	501.7	475.0	26.7	7.5	45.2	43.0	604.2	784.0	1.8	0.64	2.2	24.6	47.7	585.3	1.8	0.11	0.6	2.8	499.9	498.9
10	512.7	498.7	497.7	475.0	22.7	12.0	44.7	43.4	508.1	979.5	1.8	0.64	2.4	20.3	48.8	495.8	1.8	0.11	0.5	2.9	495.8	494.8
11	742.7	470.3	479.0	453.8	0.0	0.0	45.2	42.0	0.0	460.0	1.9	0.65	0.0	0.0	42.0	0.0	1.9	0.11	0.0	0.0	470.3	479.0
12	706.3 657.9	469.9 470.8	479.0	453.5 454.5	0.0	0.0	45.2 44.9	42.0	0.0	460.0	1.9	0.65	0.0	0.0	42.0	0.0	1.9	0.11	0.0	0.0	469.9	479.0
14	606.1	470.8	479.0 479.0	454.5	0.0	132.4	45.2	42.0 42.0	0.0	8226.0 6014.0	1.9	0.65	0.0	0.0	42.0 42.0	0.0	1.9	0.11	0.0	0.0	470.8 471.7	479.0 479.0
15	555.6	472.9	479.0	453.6	0.0	80.7	42.0	42.0	0.0	3846.4	1.9	0.65	0.0	0.0	42.0	0.0	1.9	0.11	0.0	0.0	472.9	479.0
16	502.0	473.9	479.0	454.3	0.0	26.1	42.0	42.0	0.0	1555.4	1.9	0.65	0.0	0.0	42.0	0.0	1.9	0.11	0.0	0.0	473.9	479.0
17	510.9	479.3	479.0	454.9	0.0	29.6	44.9	42.0	0.0	1701.9	1.9	0.65	0.0	0.0	42.0	0.0	1.9	0.11	0.0	0.0	479.3	479.0
18	493.1	497.1	496.1	470.0	26.1	-6.0	45.2	42.0	590.3	206.9	1.8	0.64	0.8	25.4	45.2	572.8	1.8	0.11	0.6	1.4	495.7	494.7
19	495.1	497.1	496.1	470.0	26.1	-4.1	45.2	42.0	590.1	289.4	1.8	0.64	1.0	25.1	45.4	570.2	1.8	0.11	0.6	1.7	495.5	494.5
20	495.6 511.5	499.4 515.8	498.4	470.0 470.0	28.4	-5.8	45.4	42.0	645.3	216.8	1.8	0.64	0.8	27.6	45.7	630.6	1.8	0.11	0.7	1.5	497.9	496.9
21	505.9	515.8	514.8	470.0	44.8 38.8	-6.3 -5.9	47.7 46.7	42.0 42.0	1067.7 905.4	195.1 213.1	1.8	0.63	0.7	44.1 38.0	48.0	1058.3 891.6	1.8	0.11	1.1	1.9	514.0	513.0
23	509.7	514.1	513.1	470.0	43.1	-6.4	47.7	42.0	1027.2	191.5	1.8	0.63	0.7	42.4	47.7	1010.0	1.8	0.11	1.1	1.8	512.3	511.3
24	523.1	522.4	521.4	470.0	51.4	-1.3	49.1	42.0	1263.4	404.7	1.8	0.63	1.4	50.0	49.1	1229.1	1.8	0.11	1.3	2.7	519.8	518.8
25	536.5	517.5	516.5	470.0	46.5	17.0	48.0	44.0	1116.4	1207.3	1.8	0.63	3.3	43.1	54.2	1169.0	1.8	0.11	1.1	4.4	513.1	512.1
26	549.9	513.6	512.6	470.0	42.6	34.2	47.3	46.2	1007.7	2041.8	1.8	0.63	4.6	38.0	58.9	1117.9	1.8	0.11	1.0	5.6	508.0	507.0
27	563.2	510.1	509.1	470.0	39.1	51.1	46.9	49.1	918.1	2971.9	1.8	0.64	5.5	33.6	63.1	1060.1	1.8	0.11	0.9	6.4	503.7	502.7
28	578.8	507.0	506.0	468.2	37.9	69.8	46.7	52.1	883.2	4096.0	1.8	0.64	6.4	31.4	68.7	1079.8	1.8	0.11	0.8	7.2	499.8	498.8
30	594.7	503.8 492.3	502.8 491.3	468.5 473.7	34.2 17.6	89.0 123.0	46.2 44.2	54.8	790.2 388.3	5332.8 7800.6	1.8	0.64	6.9 5.3	27.3 12.3	73.2	1001.0 475.0	1.8	0.11	0.7	7.6 5.6	496.2 486.7	495.2 485.7
31	492.4	480.1	479.1	480.1	0.0	10.3	42.0	43.2	0.0	905.5	1.8	0.65	0.0	0.0	44.4	0.0	1.8	0.11	0.0	0.0	480.1	479.1
32	513.7	480.3	479.3	480.3	0.0	31.4	42.0	45.9	0.0	1902.6	1.9	0.65	0.0	0.0	50.9	0.0	1.9	0.11	0.0	0.0	480.3	479.3
33	526.3	506.3	505.3	470.0	35.3	18.0	46.4	44.2	820.3	1253.1	1.8	0.64	3.2	32.1	52.7	846.1	1.8	0.11	0.8	4.0	502.3	501.3
34	544.5	521.5	520.5	470.0	50.5	20.9	48.8	44.4	1232.3	1390.4	1.8	0.63	3.7	46.8	56.0	1309.4	1.8	0.11	1.2	4.9	516.6	515.6
35	557.9	524.1	523.1	469.7	53.4	31.8	49.5	45.9	1321.7	1918.4	1.8	0.63	4.7	48.7	59.7	1454.0	1.8	0.11	1.2	5.9	518.2	517.2
36	571.2	523.3	522.3	467.6	54.7	45.9	49.5	48.0	1354.1	2666.7	1.8	0.63	5.8	48.9	64.0	1565.1	1.8	0.11	1.2	7.0	516.3	515.3
37	584.6	518.3	517.3	466.7	50.6	64.3	48.8	51.2	1234.7	3755.2	1.8	0.63	6.9	43.7	69.0	1508.2	1.8	0.11	1.1	8.0	510.3	509.3
38	598.0 611.4	514.2 510.8	513.2 509.8	467.3 469.4	45.9 40.3	98.6	48.0 46.9	53.9	1102.4 946.7	4866.5 6007.4	1.8	0.63	7.6 7.9	38.3 32.5	73.0 75.6	1398.4	1.8	0.11	0.8	8.6 8.7	505.7 502.1	504.7
40	626.2	507.5	506.5	467.9	38.6	116.7	46.7	58.9	946.7	7325.7	1.8	0.63	8.4	30.3	78.0	1227.1 1180.2	1.8	0.11	0.8	9.1	498.3	497.3

TABLE IIIE-B-3-1. OVERLINER SYSTEM SETTLEMENT SUMMARY

Chkd By: DEP Date: 1/27/2022

Initial Top of Initial Top of Post-Settlement st-Settlement To Bottom of op of Waste Waste Below Evaluation Overliner Waste Twaste σ'_{o} Δσ H'o Total Top of Overliner of Waste Below σ"。 Elevation Overliner e_{o} e'o Overliner Elevation Elevation Elevation (ft) (ft) (pcf) (pcf) (psf) (psf) (ft) (ft) (pcf) (psf) (ft) ettlement (ft Elevation (ft-msl) Elevation (ft-msl) (ft-msl) (ft-msl) (ft-msl) (ft-msl) 504.2 503.2 61.6 79.7 1078.2 0.7 494.9 493.9 41 642.1 467.5 35.6 135.9 46.4 827.5 8835.8 1.8 0.64 8.6 27.0 1.8 0.11 9.3 499.5 30.0 64.7 490.7 42 658.0 500.5 155.5 45.7 10516.4 1.8 0.64 8.2 80.5 875.4 1.8 0.11 0.6 8.8 491.7 490.7 469.9 20.8 173.1 67.3 0.64 6.8 80.9 567.8 0.11 0.4 7.1 484.6 483.6 43 666.9 44.4 462.5 12117.6 1.8 14.0 1.8 44 558.6 480.0 479.0 470.0 9.0 76.5 43.2 53.0 195.4 4515.0 1.9 0.65 2.8 6.2 65.9 204.4 1.9 0.11 0.2 3.0 477.0 476.0 506.9 505.9 470.0 35.8 65.9 46.4 51.5 0.64 67.3 1001.9 1.8 0.11 0.8 6.8 500.0 499.0 574.7 832.1 3853.9 1.8 6.1 29.8 592.6 518.8 517.8 468.8 49.0 71.8 48.8 52.4 1195.1 4221.0 1.8 0.63 7.2 70.9 1479.5 1.8 0.11 1.1 8.3 510.6 509.6 606.0 521.2 520.2 464.9 55.3 82.8 49.9 53.9 1378.9 4920.5 1.8 0.63 8.2 47.1 74.2 1746.5 1.8 0.11 1.2 9.4 511.8 510.8 619.4 521.0 520.0 465.2 54.8 96.4 49.5 56.0 1357.4 5852.7 1.8 0.63 8.9 45.9 76.4 1753.2 1.8 0.11 1.2 10.1 510.9 509.9 49 632.8 518.9 517.9 464.3 53.6 111.9 49.5 58.3 1326.5 6981.7 1.8 0.63 9.6 44.0 78.4 1723.3 1.8 0.11 1.1 10.7 508.2 507.2 50 646.1 514.8 513.8 463.6 50.1 129.4 48.8 60.8 1222.2 8327.7 1.8 0.63 10.1 40.0 79.8 1598.1 1.8 0.11 1.0 11.1 503.7 502.7 510.3 463.5 46.9 48.0 80.5 1469.9 0.9 500.0 499.0 51 659.5 511.3 146.2 63.1 1126.0 9684.1 1.8 0.63 10.4 36.5 1.8 0.11 11.3 673.5 507.0 464.9 42.0 163.5 47.3 65.9 994.1 11234.2 0.63 10.3 31.7 80.9 1282.8 1.8 8.0 11.1 496.8 495.8 52 508.0 1.8 0.11 689.4 503.6 469.8 33.8 182.9 46.2 68.4 779.7 12976.4 0.64 9.5 24.3 81.1 984.0 1.8 0.11 0.6 10.1 494 4 493.4 53 504.6 1.8 705.3 45.7 491.1 490.1 54 500.9 499.9 469 7 30.1 202.5 71.1 688 9 14850.2 1.8 0.64 9.2 20.9 81.4 851.9 1.8 0.11 0.5 9.8 716.2 7.7 55 491.6 490.6 469 8 20.7 222.7 44.4 73.4 16805.1 0.64 74 13.3 817 544 8 0.3 483.8 482.8 460.5 1.8 1.8 0.11 7.5 59.7 7784.0 2.9 175.4 3.0 477.0 476.0 56 604.7 480.0 479 0 471.5 122.7 43.0 160.5 19 0.65 4.6 76.4 1.9 0.11 0.1 57 625.5 508.6 507.6 460.1 47.5 114.9 48.4 58.6 1150.0 7191.3 1.8 0.63 9.2 38.3 78.4 1501.0 1.8 0.11 1.0 10.2 498.5 497.5 58 640.7 516.3 515.3 461.3 54.0 122.4 49.5 59.7 1336.1 7770.3 1.8 0.63 10.1 43.9 79.5 1742.8 1.8 0.11 1.1 11.2 505.1 504.1 59 654.1 518.5 517.5 461.8 55.7 133.6 49.9 61.4 1388.7 8659.7 1.8 0.63 10.7 44.9 80.2 1801.1 1.8 0.11 1.1 11.9 506.6 505.6 506.4 60 667.5 519.8 518.8 463.6 55.1 145.8 49.9 63.1 1375.5 9658.8 1.8 0.63 11.2 43.9 80.7 1772.1 1.8 0.11 1.1 12.3 507.4 504.9 680.9 518.9 517.9 462.1 55.8 160.0 49.9 65.3 1391.1 10907.3 1.8 0.63 11.9 43.9 81.0 1778.4 1.8 0.11 1.1 13.0 505.9 61 62 694.3 515.2 514.2 461.3 52.9 177.1 49.1 67.9 1299.2 12482.7 1.8 0.63 12.2 40.7 81.2 1652.0 1.8 0.11 1.0 13.2 501.9 500.9 707.6 510.8 70.0 497.4 63 511.8 460.2 50.6 193.8 48.8 1235.2 14035.5 1.8 0.63 12.4 38.2 81.5 1557.1 1.8 0.11 1.0 13.4 498.4 721.0 508.4 507.4 45.3 210.6 15632.5 33.2 495.4 494.4 64 462.1 72.0 1.8 0.63 12.1 81.8 1356.2 0.11 0.8 736.8 504.9 503.9 462.9 41.0 229.9 46.9 74.2 17515.3 29.1 81.8 1190.2 0.11 0.7 492.3 491.3 1.8 741.7 501.3 500.3 464.6 35.7 238.4 46.4 74.9 18325.8 1.8 11.0 24.7 81.8 1010.4 0.11 0.6 489.7 488.7 829.2 744.1 492.8 491.8 470.0 21.8 249.3 44.7 75.9 488.0 19391.2 1.8 0.64 8.0 13.9 81.8 567.1 0.11 0.4 8.3 484.5 483.5 651.1 480.0 479.0 469.3 9.7 169.1 43.2 66.7 208.6 11746.7 1.8 0.65 3.9 5.8 80.6 233.5 1.8 0.11 0.1 4.0 476.0 475.0 68 69 664.0 499.4 498.4 458.9 39.4 162.6 46.9 65.6 925.1 11126.2 1.8 0.64 9.9 29.5 80.9 1192.9 1.8 0.11 0.7 10.7 488.7 487.7 500.5 70 688.9 514.7 513.7 460.0 53.7 172.2 49.5 67.0 1329.6 12004.2 1.8 0.63 12.1 41.6 81.1 1688.6 1.8 0.11 1.1 13.1 501.5 501.7 71 702.3 516.2 515.2 461.6 53.6 184.0 49.5 68.7 1327.8 13103.3 1.8 0.63 12.5 41.1 81.4 1673.7 1.8 0.11 1.0 13.5 502.7 72 715.6 516.8 515.8 459.9 55.8 196.9 49.9 70.3 1393.1 14305.7 1.8 0.63 13.2 42.7 81.6 1740.8 1.8 0.11 1.1 14.3 502.5 501.5

73

74

75

76

78

79

80

729.0

739.5

742.4

745.0

748.0

749.4

753.9

698.7

516.7

514.8

512.0

508.7

505.0

501.5

493.3

480.2

515.7

513.8

511.0

507.7

504.0

500.5

492.3

479.2

460.0

459.0

458.0

460.0

460 0

459.9

459.9

470.8

55.8

54.8

53.1

47.7

44.0

40.7

32.4

8.4

210.3

222.7

228.3

234.3

241.0

245.8

258.7

216.6

49.9

49.5

49.5

48.4

47.7

46.9

45.9

43.0

72.0

73.4

74.0

74.6

75.3

75.6

76.6

72.7

1391.0

1356.4

1313.8

1154.9

1048.4

954.0

744.1

180.4

15610.4

16807.6

17346.4

17927.8

18598.3

19043.0

20270.7

16213.8

1.8

1.8

1.8

1.8

1.8

1.8

1.8

1.9

0.63

0.63

0.63

0.63

0.63

0.63

0.64

0.65

13.6

13.9

13.7

13.1

12.6

12.1

10.6

3.7

42.1

40.9

39.3

34.6

31.4

28.5

21.8

4.7

81.8

81.8

81.8

81.8

81.8

81.8

81.8

81.5

1723.2

1672.8

1607.6

1416.0

1282.7

1166.9

890.4

189.9

1.8

1.8

1.8

1.8

1.8

1.8

1.8

1.9

0.11

0.11

0.11

0.11

0.11

0.11

0.11

0.11

1.1

1.0

1.0

0.9

0.8

0.7

0.6

0.1

14.7

14.9

14.7

14.0

13.4

12.8

11.2

3.9

502.0

499.9

497.3

494.8

491.6

488.7

482.1

4763

501.0

498.9

496.3

493.8

490.6

487.7

481.1

475.3

Chkd By: DEP Date: 1/27/2022

TABLE IIIE-B-3-1. OVERLINER SYSTEM SETTLEMENT SUMMARY

Evaluation Point	Top of Waste Elevation (ft-msl)	Initial Top of Overliner Elevation (ft-msl)	Initial Top of Waste Below Overliner Elevation (ft-msl)	Bottom of Waste Elevation (ft-msl)	H _o (ft)	T _{waste} (ft)	γ _{mswb} (pcf)	γ _{mswa} (pcf)	σ' _o (psf)	Δσ (psf)	e _o	C _c	S _p (ft)	H' _o (ft)	γ' _{mswb} (pcf)	σ" _o (psf)	e' _o	α	S _c (ft)	Total Settlement (ft)	Post-Settlement Top of Overliner Elevation (ft-msl)	Post-Settlement Top of Waste Below Overliner Elevation (ft-msl)
81	709.3	499.0	498.0	463.4	34.6	208.4	46.2	71.8	798.6	15425.0	1.8	0.64	10.2	24.4	81.6	994.4	1.8	0.11	0.6	10.8	488.1	487.1
82	734.9	511.3	510.3	463.0	47.3	221.7	48.4	73.4	1144.1	16732.2	1.8	0.63	12.7	34.6	81.8	1413.2	1.8	0.11	0.9	13.6	497.7	496.7
83	739.3	512.6	511.6	464.0	47.6	224.6	48.4	73.6	1152.9	16992.2	1.8	0.63	12.8	34.8	81.8	1422.8	1.8	0.11	0.9	13.7	498.9	497.9
84	739.5	512.8	511.8	459.9	51.9	224.7	49.1	73.6	1276.5	16995.0	1.8	0.63	13.5	38.4	81.8	1571.9	1.8	0.11	1.0	14.5	498.4	497.4
85 86	739.8 740.0	513.0	512.0 511.1	465.0 456.5	47.0 54.6	224.8 225.9	48.4 49.5	73.6 73.8	1137.7 1352.2	17000.5 17127.8	1.8	0.63	12.7 13.9	34.3 40.7	81.8 81.8	1401.4 1663.2	1.8	0.11	0.9	13.6	499.4 497.1	498.4 496.1
87	746.6	510.9	509.9	455.0	54.9	233.7	49.5	74.6	1359.3	17127.8	1.8	0.63	14.2	40.7	81.8	1664.3	1.8	0.11	1.0	15.0	495.7	494.7
88	748.2	509.3	508.3	457.6	50.7	237.0	48.8	74.7	1235.8	18170.9	1.8	0.63	13.6	37.0	81.8	1514.4	1.8	0.11	0.9	14.6	494.7	493.7
89	749.1	505.1	504.1	459.5	44.6	242.0	47.7	75.3	1063.1	18672.2	1.8	0.63	12.8	31.9	81.8	1302.4	1.8	0.11	0.8	13.6	491.5	490.5
90	749.3	500.0	499.0	459.9	39.2	247.3	46.9	75.8	919.0	19197.1	1.8	0.64	11.8	27.3	81.8	1117.2	1.8	0.11	0.7	12.5	487.5	486.5
91	752.0	492.8	491.8	459.2	32.6	257.3	45.9	76.6	747.6	20164.0	1.8	0.64	10.6	21.9	81.8	895.8	1.8	0.11	0.6	11.2	481.6	480.6
92	677.0	480.3	479.3	470.4	8.9	194.7	43.0	70.0	191.8	14094.4	1.9	0.65	3.8	5.1	81.1	208.0	1.8	0.11	0.1	3.9	476.4	475.4
93	686.6 695.7	498.7 505.9	497.7 504.9	466.0 460.4	31.7 44.6	185.9 187.7	45.9 47.7	69.0 69.3	728.0	13288.0	1.8	0.64	9.2 11.4	22.5 33.2	81.1 81.3	912.8 1349.3	1.8	0.11	0.6	9.8 12.3	488.9 493.7	487.9 492.7
95	702.3	507.3	506.3	459.6	46.7	193.0	48.0	70.0	1121.9	13980.2	1.8	0.63	11.4	34.8	81.4	1418.5	1.8	0.11	0.8	12.8	494.5	493.5
96	709.0	507.8	506.8	459.8	47.0	199.2	48.0	70.9	1128.7	14570.9	1.8	0.63	12.1	34.9	81.6	1423.5	1.8	0.11	0.9	13.0	494.8	493.8
97	715.6	508.1	507.1	460.1	46.9	205.6	48.0	71.6	1126.8	15168.6	1.8	0.63	12.3	34.7	81.7	1415.7	1.8	0.11	0.9	13.1	494.9	493.9
98	722.3	508.8	507.8	456.8	51.0	211.4	49.1	72.3	1254.0	15737.3	1.8	0.63	13.0	38.0	81.8	1555.3	1.8	0.11	1.0	14.0	494.9	493.9
99	728.9	509.8	508.8	455.0	53.8	217.1	49.5	73.0	1332.7	16305.9	1.8	0.63	13.6	40.3	81.8	1645.9	1.8	0.11	1.0	14.6	495.2	494.2
100	735.5	507.8	506.8	457.9	48.9	225.7	48.4	73.8	1183.6	17113.6	1.8	0.63	13.1	35.8	81.8	1464.2	1.8	0.11	0.9	14.0	493.8	492.8
101	739.6 741.0	504.5 500.5	503.5 499.5	460.1 459.8	43.3 39.7	233.2 238.4	47.7 46.9	74.6 74.9	1033.1 931.9	17844.5 18323.8	1.8	0.63	12.3 11.8	31.0 27.9	81.8 81.8	1268.2 1142.1	1.8	0.11	0.8	13.1	491.3 488.1	490.3 487.1
102	742.3	493.8	492.8	458.4	34.5	246.4	46.2	75.6	796.4	19089.7	1.8	0.64	10.9	23.6	81.8	964.9	1.8	0.11	0.6	11.5	482.4	481.4
104	638.0	480.8	479.8	480.8	0.0	155.2	42.0	64.7	0.0	10498.3	1.9	0.65	0.0	0.0	79.6	0.0	1.9	0.11	0.0	0.0	480.8	479.8
105	652.0	498.0	497.0	460.9	36.1	151.9	46.4	64.0	838.1	10189.7	1.8	0.64	9.1	27.0	80.5	1085.7	1.8	0.11	0.7	9.8	488.2	487.2
106	634.1	496.5	495.5	464.5	31.1	135.6	45.9	61.6	713.4	8815.1	1.8	0.64	7.9	23.2	79.6	921.2	1.8	0.11	0.6	8.5	488.0	487.0
107	652.7	502.1	501.1	457.4	43.7	148.6	47.7	63.4	1040.8	9890.5	1.8	0.63	10.1	33.6	80.6	1354.1	1.8	0.11	0.9	10.9	491.2	490.2
108	659.4	503.2	502.2	457.8	44.5	154.2	47.7	64.4	1059.6	10383.0	1.8	0.63	10.4	34.1	80.7	1376.9	1.8	0.11	0.9	11.2	492.0	491.0
109 110	666.0	503.5 505.0	502.5 504.0	460.0 457.6	42.4 46.4	160.6 165.6	47.3 48.0	65.3 66.1	1003.2 1115.5	10944.5 11417.2	1.8	0.63	10.3	32.1 35.5	80.9 81.0	1298.9 1435.9	1.8	0.11	0.8	11.1	492.4 493.1	491.4 492.1
111	679.3	506.0	505.0	457.6	49.7	171.3	48.8	67.0	1212.1	11944.0	1.8	0.63	11.6	38.1	81.1	1545.8	1.8	0.11	1.0	12.5	493.1	492.1
112	686.0	505.6	504.6	458.1	46.5	178.3	48.0	67.9	1117.2	12567.3	1.8	0.63	11.4	35.1	81.2	1425.4	1.8	0.11	0.9	12.3	493.3	492.3
113	692.6	505.0	504.0	460.2	43.8	185.6	47.7	69.0	1044.2	13266.8	1.8	0.63	11.2	32.6	81.3	1324.5	1.8	0.11	0.8	12.1	493.0	492.0
114	699.3	500.7	499.7	459.9	39.8	196.5	46.9	70.3	934.6	14282.8	1.8	0.64	10.9	28.9	81.4	1178.6	1.8	0.11	0.7	11.6	489.1	488.1
115	706.2	489.4	488.4	454.5	33.9	214.8	46.2	72.5	782.8	16034.6	1.8	0.64	10.2	23.7	81.7	968.4	1.8	0.11	0.6	10.8	478.6	477.6
116	624.7	481.4	480.4	466.6	13.8	141.3	43.7	62.5	301.3	9289.0	1.8	0.65	4.7	9.1	79.3	360.0	1.8	0.11	0.2	4.9	476.4	475.4
117	617.2	494.8	493.8	455.8	38.0	120.5	46.7	59.4	887.4	7620.7	1.8	0.64	8.4	29.6	78.5	1161.7	1.8	0.11	0.8	9.2	485.6	484.6
118	608.8 595.1	481.1 480.4	480.1 479.4	464.8 466.3	15.2 13.1	125.8 112.7	44.0	60.3 58.3	334.7 286.2	8039.5 7030.4	1.8	0.65	4.8	10.4 8.9	77.5 75.3	402.7 335.4	1.8	0.11	0.3	5.1	476.0 476.0	475.0 475.0
119	605.0	480.4	479.4	460.3	32.4	108.4	45.9	57.7	743.7	6717.6	1.8	0.65	7.3	25.1	75.3	957.2	1.8	0.11	0.2	8.0	476.0	475.0

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-B-3 TABLE IIIE-B-3-1. OVERLINER SYSTEM SETTLEMENT SUMMARY

Chkd By: DEP Date: 1/27/2022

Initial Top of st-Settlement Top Initial Top of Bottom o Γop of Waste Waste Below Overliner H'o σ", Sc Total Top of Overliner of Waste Below Evaluation Waste T_{waste} σ'_{o} Λσ C_c Elevation Overliner e_o e'o Overliner Elevation Point Elevation Elevation (ft) (pcf) (pcf) (psf) (psf) (ft) (ft) (pcf) (psf) (ft) Settlement (ft Elevation (ft-msl) Elevation (ft-msl) (ft-msl) (ft-msl) (ft-msl) (ft-msl) 488.3 487.3 600.8 496.8 495.8 458.2 102.0 46.7 56.9 876.7 6259.1 1.8 0.64 7.7 29.8 75.9 1133.1 1.8 0.11 0.8 8.5 121 37.6 9.2 489.2 623.1 500.3 499.3 454.0 45.3 120.8 48.0 59.4 1088.3 7638.9 1.8 0.63 36.1 79.0 1424.5 1.8 0.11 0.9 10.1 490.2 122 1484.0 10.6 490.9 489.9 629.7 501.5 500.5 453.5 46.9 126.3 48.0 60.3 1127.5 8070.0 1.8 0.63 9.6 37.3 79.6 1.8 0.11 0.9 123 124 636.4 501.4 500.4 456.7 43.7 133.0 47.7 61.1 1040.7 8582.8 1.8 0.63 9.5 34.2 79.9 1364.4 1.8 0.11 0.9 10.4 491.0 490.0 62.2 9.3 0.8 10.0 492.0 491.0 125 643.0 502.0 501.0 461.2 39.8 139.0 46.9 932.7 9105.9 1.8 0.64 30.5 80.1 1221.0 1.8 0.11 498.4 497.4 46.4 63.7 837.3 9973.0 0.64 9.0 27.0 80.4 1085.8 1.8 0.11 0.7 9.7 488.7 487.7 126 36.1 149.2 1.8 491.1 490.1 456.1 33.9 46.2 65.9 783.4 1.8 0.64 9.1 24.8 80.8 1003.6 1.8 0.11 0.6 9.7 481.3 480.3 127 656.3 163.3 11217.7 488.6 487.6 455.6 45.9 66.1 1.8 0.64 8.8 23.2 80.9 939.4 1.8 0.11 0.6 9.4 479.2 478.2 128 656.2 32.1 165.6 736.3 11411.6 129 582.1 480.8 479.8 471.6 8.2 99.3 43.0 56.6 176.4 6075.8 1.9 0.65 2.9 72.0 191.6 1.9 0.11 0.1 3.0 477.8 476.8 130 570.6 481.3 480.3 463.2 17.1 87.3 44.2 54.8 377.6 5240.5 1.8 0.64 4.5 12.5 70.3 441.2 1.8 0.11 0.3 4.9 476.4 475.4 8.9 487.2 593.3 496.1 495.1 451.8 43.3 95.3 47.7 56.0 1031.1 5790.6 1.8 0.63 8.0 35.3 75.3 1326.8 1.8 0.11 0.9 486.2 7.9 8.7 486.3 485.3 132 588.7 495.0 494.0 450.7 43.3 91.7 47.7 55.4 1033.1 5535.8 1.8 0.63 35.5 74.6 1323.3 1.8 0.11 0.9 7.2 73.4 1119.7 8.0 487.9 486.9 133 586.8 495.9 494.9 457.2 37.7 88.9 46.7 54.8 880.4 5329.6 1.8 0.64 30.5 1.8 0.11 0.8 7.2 134 593.5 495.9 494.9 465.0 29.9 95.6 45.7 56.0 682.6 5809.3 1.8 0.64 6.6 23.3 74.0 860.3 1.8 0.11 0.6 488.7 4877 796.3 7.1 57.1 75.4 1.8 0.5 486.1 485.1 600.1 493.2 492.2 464.5 27.7 104.9 45.4 629.4 6452.7 1.8 0.64 6.6 21.1 0.11 135 7.2 77.4 7.8 7326.9 22.6 875.5 1.8 0.11 0.6 479.7 478.7 606.1 487.5 486.5 456.6 29.9 1167 45.7 58.9 682.2 1.8 0.64 136 556.7 52.7 4358.9 4.2 66.4 407.5 1.8 0.11 0.3 4.5 476.3 475.3 137 480.7 479.7 463.3 16.4 74.0 44 0 361.0 1.8 0.64 12.3 138 544.7 480.8 479.8 465 9 13.9 619 43.7 50.9 304 6 3610.4 1.8 0.65 3.5 10 4 62.5 325.8 1.8 0.11 0.3 3.8 477.1 476.1 484.5 27.5 50.7 48.8 2933.1 1.8 4.7 22.8 699.8 1.8 0.11 0.6 5.3 479.2 478.2 139 537.2 483 5 456.0 454 625 1 0.64 61.4 487.5 456.6 29.9 54.4 45.7 49.5 684.0 3151.4 1.8 0.64 5.1 24.9 62.8 780.8 1.8 0.11 0.6 5.7 481.8 480.8 140 543.9 486.5 550.5 487.5 486.5 458.4 61.0 50.9 639.8 3567.4 1.8 0.64 5.2 22.9 64.7 741.9 1.8 0.11 0.6 5.8 481.7 480.7 141 28.2 45.4 556.3 487.3 486.3 457.0 29.3 67.0 45.7 51.5 669.4 3911.2 1.8 0.64 5.5 23.8 66.4 789.3 1.8 0.11 0.6 6.1 481.2 480.2 142 476.3 143 528.2 481.2 480.2 462.5 17.6 45.0 44.2 48.0 389.6 2622.2 1.8 0.64 3.6 14.1 58.3 410.5 1.8 0.11 0.4 3.9 477.3 337.0 476.3 518.1 480.6 479.6 464.4 15.2 35.4 44.0 46.4 334.5 2105.9 1.8 0.65 3.0 12.2 55.1 1.8 0.11 0.3 3.3 477.3 144 50.9 227.8 0.2 2.4 477.7 476.7 145 506.1 480.1 479.1 468.0 11.1 24.0 43.4 44.9 241.9 1536.7 1.8 0.65 2.2 8.9 1.8 0.11 478.1 146 527.5 484.0 483.0 455.8 27.2 41.5 45.4 47.3 617.8 2424.9 1.8 0.64 4.3 22.9 58.6 671.7 1.8 0.11 0.6 4.8 479.1 490.4 493.0 492.0 471.0 21.0 -4.6 44.4 42.0 465.9 267.8 1.8 0.64 0.9 20.0 44.7 447.7 1.8 0.11 0.5 1.4 491.5 490.5 51 S2 558.3 508.3 507.3 469.7 37.7 48.0 46.7 48.4 879.0 2781.7 1.8 0.64 5.3 32.4 61.9 1003.2 1.8 0.11 0.8 6.1 502.2 501.2 553.9 518.8 517.8 468.9 48.9 33.1 48.4 46.2 1184.2 1988.8 1.8 0.63 4.7 44.2 59.4 1314.1 1.8 0.11 1.1 5.8 513.0 512.0 53 500.9 S4 589.7 509.7 508.7 468.6 40.1 78.0 46.9 53.3 939.9 4615.6 1.8 0.63 7.0 33.1 71.1 1175.7 1.8 0.11 8.0 7.8 485.5 S5 620.4 492.1 491.1 473.6 17.5 126.3 44.2 60.3 387.1 8069.9 1.8 0.64 5.3 12.2 77.7 474.2 1.8 0.11 0.3 5.6 10.0 510.4 509.4 S6 617.0 520.4 519.4 465.0 54.4 94.6 49.5 55.7 1347.5 5726.0 1.8 0.63 8.8 45.6 76.1 1735.1 1.8 0.11 1.2 S7 739.3 511.7 510.7 460.4 50.3 225.6 48.8 73.8 17105.9 1.8 0.63 13.3 37.0 81.8 1512.0 1.8 0.11 0.9 14.2 497.5 496.5 52.4 73.6 13.6 81.8 1589.5 0.11 1.0 14.6 498.8 497.8 S8 739.5 513.3 512.3 459.9 224.2 49.1 16957.6 1.8 0.63 38.9 8.9 34.0 78.5 1334.5 0.11 0.9 9.8 489.6 488.6 S9 619.1 499.4 498.4 455.5 42.9 117.7 47.3 59.1 7420.3 1.8 0.63 480.6 479.6 13.8 105.8 43.7 57.4 6535.5 4.3 9.6 74.2 355.5 0.11 0.2 4.5 476.1 475.1 S10 588.5 465.8 302.4 1.8 0.65 508.4 507.4 461.3 46.1 111.7 48.0 58.3 1107.1 6974.2 1.8 0.63 9.0 37.1 77.9 1446.0 1.8 0.11 0.9 9.9 498.5 497.5 S11 476.3 S12 480.6 479.6 8.3 120.7 43.0 59.4 179.0 7632.5 1.9 0.65 3.1 5.2 76.1 198.9 1.9 0.11 0.1 3.2 477.3 507.4 653.1 520.1 519.1 463.7 55.4 131.0 49.9 61.1 1382.9 8461.8 1.8 0.63 10.6 44.8 80.1 1794.6 1.8 0.11 11.7 508.4 S13 720.7 494.5 493.5 469.7 23.8 224.2 44.9 73.6 533.5 16958.2 1.8 0.64 8.2 15.6 81.8 637.8 1.8 0.11 0.4 8.6 485.9 484.9 S14 509.4 S15 617.0 520.4 519.4 465.0 54.4 94.6 49.5 55.7 1347.5 5726.0 1.8 0.63 8.8 45.6 69.5 1585.6 1.8 0.11 1.2 10.0 510.4 486.6 S16 614.9 497.0 496.0 455.1 40.9 115.9 46.9 58.9 960.7 7278.3 1.8 0.63 8.6 32.3 74.4 1202.0 1.8 0.11 0.8 9.4 487.6 S17 739.5 515.1 514.1 461.0 53.1 222.4 49.5 73.4 1314.7 16782.9 1.8 0.63 13.6 39.5 81.4 1608.8 1.8 0.11 1.0 14.6 500.5 499.5 7.1 482.8 481.8 S18 581.7 489.9 488.9 458.6 30.4 89.8 45.7 55.1 694.0 5403.4 1.8 0.64 6.5 23.9 68.2 814.4 1.8 0.11 0.6

Chkd By: DEP Date: 1/27/2022

OVERLINER SYSTEM SETTLEMENT AND STRAIN

E. Determine the post-settlement slope of the overliner system and verify that strain induced on the overliner system components due to settlement is within acceptable limits.

Evaluation points for the overliner slope and strain analyses are shown on Sheet IIIE-B-3-25.

An example calculation of the estimated post-settlement slope is shown below for Evaluation Points S1 and S2. The estimated post-settlement slopes for the evaluation points are shown on Sheet IIIE-B-3-15 (Table IIIE-B-3-4).

Prior to Settlement:

Evaluation Point S1 Elev. =	508.3 ft-msl
Evaluation Point S2 Elev. =	493.0 ft-msl
Plan View Distance =	573.0 ft
Initial Slope =	2.7 %

After Settlement:

Evaluation Point S1 Elev. =	502.2 ft-msl
Evaluation Point S2 Elev. =	491.5 ft-ms
Plan View Distance =	573.0 ft
Post-settlement Slope =	1.87 %

An example calculation of the estimated strain is shown below for Evaluation Points S1 and S2. The estimated strain for the evaluation points is shown on Sheet IIIE-B-3-15.

Strain =
$$\frac{L_{\rm f} - L_{\rm o}}{L_{\rm o}} \times 100$$
 (Ref. 2, p. 472)

 L_f = Final distance between evaluation points after total settlement (ft)

L_o= Initial distance between evaluation points before total settlement (ft)

Initial Distance:

Evaluation Point S1 Elev. =	508 3	ft-msl
Evaluation Point S2 Elev. =	493.0	ft-msl
Plan View Distance =	573.01	ft
Γ° =	573.22	ft

Final Distance (after settlement):

Evaluation Point S1 Elev. =	502.2 ft-msl
Evaluation Point S2 Elev. =	491.5 ft-msl
Plan View Distance =	573.01 ft
$L_{ m f}$ $=$	573.11 ft

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-B-3 OVERLINER SYSTEM SETTLEMENT AND STRAIN

Chkd By: DEP Date: 1/23/2022

The allowable tensile strain for the overliner system components are listed below.

- Geotextile 20% (Reference 3, page 11)
- Geonet 200% (Reference 3, page 401)
- The allowable tensile strain for a geomembrane is 8 to 12% (Reference 7)

As shown on Sheet IIIE-B-3-15, the estimated strain between select points ranges from -0.53% to 0.01%. The estimated strain values are acceptable and the system will be stable. Note that a negative strain value indicates that the component is in compression.

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-B-3 OVERLINER SYSTEM STRAIN SUMMARY

Chkd By: DEP Date: 1/27/2022

TABLE IIIE-B-3-2. OVERLINER SLOPE EVALUATION

Evaluation	Evaluation Point ¹		of Overliner in Trench) nsl)	Overliner	nent Top of Elevation msl)	Plan View Distance (ft)	Initial Slope (%)	Post-Settlement Slope (%)
A	В	Α	В	A	В			
S2	S1	508.3	493.0	502.2	491.5	573.0	2.7	1.87
S3	S4	518.8	509.7	513.0	501.9	489.1	1.9	2.27
S4	S5	509.7	492.1	501.9	486.5	646.7	2.7	2.38
S6	S7	520.4	511.7	510.4	497.5	677.5	1.3	1.91
S8	S9	513.3	499.4	498.8	489.6	576.7	2.4	1.59
S9	S10	499.4	480.6	489.6	476.1	125.3	15.0	10.77
S11	S12	508.4	480.6	498.5	477.3	187.2	14.9	11.33
S13	S14	520.1	494.5	508.4	485.9	1170.9	2.2	1.91
S15	S16	520.4	497.0	510.4	487.6	1228.0	1.9	1.86
S17	S18	515.1	489.9	500.5	482.8	1483.4	1.7	1.19

TABLE IIIE-B-3-3. OVERLINER STRAIN EVALUATION

Evaluati	Evaluation Point ¹		of Overliner ation nsl)	Overliner	ment Top of Elevation msl)	Plan View Distance (ft)	L _o (ft)	L _f (ft)	Strain (%)
A	В	A	В	A	В				
S2	S1	508.3	493.0	502.2	491.5	573.0	573.22	573.11	-0.018
S3	S4	518.8	509.7	513.0	501.9	489.1	489.18	489.23	0.008
S4	S5	509.7	492.1	501.9	486.5	646.7	646.95	646.89	-0.009
S6	S7	520.4	511.7	510.4	497.5	677.5	677.56	677.62	0.010
S8	S9	513.3	499.4	498.8	489.6	576.7	576.88	576.78	-0.017
S9	S10	499.4	480.6	489.6	476.1	125.3	126.67	126.00	-0.530
S11	S12	508.4	480.6	498.5	477.3	187.2	189.22	188.36	-0.458
S13	S14	520.1	494.5	508.4	485.9	1170.9	1171.20	1171.13	-0.006
S15	S16	520.4	497.0	510.4	487.6	1228.0	1228.21	1228.20	-0.001
S17	S18	515.1	489.9	500.5	482.8	1483.4	1483.59	1483.49	-0.007

¹ Refer to Sheet IIIE-B-3-25 for evaluation point locations.

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-B-3 OVERLINER SYSTEM SETTLEMENT AND STRAIN

Chkd By: DEP Date: 1/27/2022

F. Determine the post-settlement slope of the leachate collection system pipe.

Similar to the steps outlined above, the overliner leachate collection system pipes were evaluated to determine their post-settlement slopes. The pipe evaluation points are shown on Sheet IIIE-B-3-26. Pipe profiles depicting the at-construction and post-settlement slopes are presented on Sheets IIIE-B-3-27 through IIIE-B-3-30. The settlement calculations for the pipes are provided on Sheets IIIE-B-3-17 through IIIE-B-3-19. The post-settlement slopes for the leachate collection pipes are presented on Sheets IIIE-B-3-20 and 21.

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-B-3 TABLE IIIE-B-3-4. OVERLINER TRENCH PIPE SETTLEMENT SUMMARY

Evaluation Point	Top of Waste Elevation (ft-msl)	Initial Top of Overliner Elevation (in Trench) (ft-msl)	Initial Top of Waste Below Overliner Elevation (in Trench) (ft-msl)	Bottom of Waste Elevation (ft-msl)	H _o (ft)	T _{waste} (ft)	γ _{mswb} (pcf)	Υ _{mswa} (pcf)	σ' _o (psf)	Δσ (psf)	e _o	Cc	S _p (ft)	H'o (ft)	γ' _{mswb} (pcf)	σ" _o (psf)	e' _o	α	S _c (ft)	Total Settlement (ft)	Post-Settlement Top of Overliner Elevation (in Trench) (ft-msl)	Post-Settlement Top of Waste Below Overliner Elevation (in Trench) (ft-msl)
1	532.9	520.7	520.7	470.0	50.7	8.1	48.8	43.0	1236.2	809.9	1.8	0.63	2.5	48.2	51.2	1234.2	1.8	0.11	1.2	3.7	517.0	517.0
2	569.2	519.0	519.0	470.0	49.0	46.2	48.4	48.0	1185.8	2679.6	1.8	0.63	5.7	43.3	61.6	1335.3	1.8	0.11	1.1	6.8	512.2	512.2
3	606.6	516.5	516.5	466.4	50.1	86.1	48.8	54.5	1221.9	5149.6	1.8	0.63	8.1	42.0	72.5	1523.4	1.8	0.11	1.1	9.1	507.4	507.4
4	649.4	514.0	514.0	459.1	54.9	131.4	49.5	61.1	1360.4	8483.0	1.8	0.63	10.6	44.3	79.5	1761.8	1.8	0.11	1.1	11.7	502.3	502.3
5	690.7	511.5	511.5	460.0	51.5	175.2	49.1	67.6	1265.8	12305.0	1.8	0.63	11.9	39.6	81.0	1602.7	1.8	0.11	1.0	12.9	498.6	498.6
6	721.0	509.0	509.0	460.8	48.2	208.0	48.4	71.8	1167.3	15398.7	1.8	0.63	12.5	35.7	81.5	1455.9	1.8	0.11	0.9	13.4	495.6	495.6
7	721.4	506.6	506.6	461.3	45.3	210.7	48.0	72.0	1087.5	15641.6	1.8	0.63	12.1	33.2	81.6	1352.5	1.8	0.11	0.8	12.9	493.7	493.7
8	694.0	504.0	504.0	460.1	43.9	186.0	47.7	69.0	1045.6	13290.8	1.8	0.63	11.2	32.6	81.1	1323.2	1.8	0.11	0.8	12.1	491.9	491.9
9	662.9	501.3	501.3	460.1	41.2	157.5	47.3	65.0	975.1	10699.1	1.8	0.63	10.0	31.2	80.4	1255.3	1.8	0.11	0.8	10.8	490.5	490.5
10	647.9	500.7	500.7	457.1	43.6	143.2	47.7	62.8	1038.5	9455.2	1.8	0.63	9.9	33.7	79.9	1346.4	1.8	0.11	0.9	10.7	490.0	490.0
11	631.0	500.0	500.0	456.3	43.7	127.0	47.7	60.6	1040.3	8153.0	1.8	0.63	9.3	34.3	78.5	1347.5	1.8	0.11	0.9	10.2	489.8	489.8
12	616.3	497.7	497.7	455.7	42.0	114.6	47.3	58.6	994.1	7174.1	1.8	0.63	8.7	33.4	76.9	1282.2	1.8	0.11	0.8	9.5	488.2	488.2
13	604.2	497.0	497.0	453.3	43.7	103.2	47.7	57.1	1041.4	6355.9	1.8	0.63	8.4	35.3	75.3	1328.7	1.8	0.11	0.9	9.3	487.7	487.7
14	593.0	494.0	494.0	450.9	43.1	95.0	47.7	55.7	1028.2	5748.2	1.8	0.63	8.0	35.2	73.8	1297.6	1.8	0.11	0.9	8.9	485.1	485.1
15	579.9	493.3	493.3	451.7	41.6	82.6	47.3	53.9	984.8	4912.5	1.8	0.63	7.3	34.3	70.9	1216.7	1.8	0.11	0.9	8.2	485.1	485.1
16	568.7	492.0	492.0	455.4	36.6	72.7	46.4	52.4	849.6	4267.6	1.8	0.64	6.4	30.1	67.6	1018.8	1.8	0.11	0.8	7.2	484.8	484.8
17	557.8	489.0	489.0	456.0	33.0	64.8	45.9	51.2	757.1	3777.1	1.8	0.64	5.8	27.2	64.7	878.7	1.8	0.11	0.7	6.5	482.5	482.5
18	542.5	486.0	486.0	456.3	29.7	52.5	45.7	49.1	678.7	3042.0	1.8	0.64	5.0	24.7	60.8	752.1	1.8	0.11	0.6	5.6	480.4	480.4
19	531.9	483.4	483.4	456.0	27.4	44.6	45.4	47.7	622.0	2584.4	1.8	0.64	4.4	23.0	58.3	669.3	1.8	0.11	0.6	5.0	478.4	478.4
20	534.4	522.1	522.1	470.0	52.1	8.4	49.1	43.0	1279.2	820.0	1.8	0.63	2.5	49.5	51.5	1276.0	1.8	0.11	1.3	3.8	518.3	518.3
21	572.3	520.7	520.7	469.9	50.8	47.5	48.8	48.4	1238.7	2761.3	1.8	0.63	5.8	45.0	62.2	1398.3	1.8	0.11	1.1	7.0	513.8	513.8
22	629.0	518.0	518.0	463.2	54.8	107.0	49.5	57.4	1356.6	6601.2	1.8	0.63	9.5	45.3	76.7	1739.4	1.8	0.11	1.1	10.6	507.4	507.4
23	690.0	515.7	515.7	460.3	55.4	170.4	49.9	66.7	1382.3	11829.5	1.8	0.63	12.2	43.2	81.0	1749.2	1.8	0.11	1.1	13.3	502.4	502.4
24	733.6	514.0	514.0	462.7	51.3	215.6	49.1	72.7	1260.1	16143.4	1.8	0.63	13.2	38.1	81.7	1557.5	1.8	0.11	1.0	14.1	499.9	499.9
25	739.5	511.6	511.6	459.9	51.6	223.9	49.1	73.6	1268.7	16939.1	1.8	0.63	13.4	38.2	81.8	1561.7	1.8	0.11	1.0	14.4	497.2	497.2
26	737.6	509.0	509.0	460.9	48.1	224.6	48.4	73.6	1163.9	16985.7	1.8	0.63	12.9	35.2	81.8	1438.2	1.8	0.11	0.9	13.8	495.2	495.2
27	707.7	506.6	506.6	458.4	48.2	197.2	48.4	70.6	1167.1	14377.4	1.8	0.63	12.2	36.0	81.3	1464.5	1.8	0.11	0.9	13.1	493.5	493.5
28	674.4	504.6	504.6	455.8	48.8	165.8	48.4	66.1	1180.2	11428.2	1.8	0.63	11.3	37.5	80.8	1514.0	1.8	0.11	0.9	12.2	492.4	492.4
29	649.6	502.5	502.5	455.0	47.5	143.1	48.4	62.8	1150.2	9448.0	1.8	0.63	10.3	37.2	80.0	1487.3	1.8	0.11	0.9	11.3	491.3	491.3
30	635.0	501.1	500.1	454.9	45.2	130.9	48.0	60.8	1086.1	8418.4	1.8	0.63	9.6	35.6	79.1	1408.4	1.8	0.11	0.9	10.5	490.6	489.6
31	612.9	498.5	497.5	456.4	41.2	111.3	47.3	58.3	973.2	6950.6	1.8	0.63	8.5	32.7	76.4	1249.3	1.8	0.11	0.8	9.3	489.3	488.3
32	596.0	496.2	495.2	458.4	36.8	96.8	46.4	56.0	855.2	5876.5	1.8	0.64	7.5	29.4	73.4	1078.3	1.8	0.11	0.7	8.2	488.0	487.0

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-B-3 TABLE IIIE-B-3-4. OVERLINER TRENCH PIPE SETTLEMENT SUMMARY

Chkd By: DEP Date: 1/23/2022

Evaluation Point	Top of Waste Elevation (ft-msl)	Initial Top of Overliner Elevation (in Trench) (ft-msl)	Initial Top of Waste Below Overliner Elevation (in Trench) (ft-msl)	Bottom of Waste Elevation (ft-msl)	H _o (ft)	T _{waste} (ft)	γ _{mswb} (pcf)	γ _{mswa} (pcf)	σ' _o (psf)	Δσ (psf)	e _o	C _c	S _p (ft)	H' _o (ft)	γ' _{mswb} (pcf)	σ" _o (psf)	e'o	α	S _c (ft)	Total Settlement (ft)	Post-Settlement Top of Overliner Elevation (in Trench) (ft-msl)	Post-Settlement Top of Waste Below Overliner Elevation (in Trench) (ft-msl)
33	584.9	494.1	493.1	462.6	30.5	87.8	45.7	54.8	698.1	5270.3	1.8	0.64	6.4	24.1	70.9	854.1	1.8	0.11	0.6	7.1	487.1	486.1
34	576.5	491.3	490.3	461.7	28.6	82.2	45.4	53.9	650.5	4887.1	1.8	0.64	6.0	22.6	69.0	779.8	1.8	0.11	0.6	6.6	484.7	483.7
35	568.3	487.7	486.7	460.3	26.4	77.6	45.2	53.3	595.6	4593.9	1.8	0.64	5.6	20.8	67.6	701.4	1.8	0.11	0.5	6.1	481.6	480.6
36	550.5	486.0	485.0	458.2	26.8	61.5	45.2	50.9	605.4	3590.9	1.8	0.64	5.1	21.7	62.8	681.4	1.8	0.11	0.6	5.7	480.3	479.3
37	533.5	484.0	483.0	456.4	26.6	46.5	45.2	48.0	600.2	2692.6	1.8	0.64	4.4	22.1	58.9	651.0	1.8	0.11	0.6	5.0	479.0	478.0
38	519.6	482.0	481.0	455.1	25.9	34.7	45.2	46.2	584.6	2060.6	1.8	0.64	3.8	22.0	55.4	610.1	1.8	0.11	0.6	4.4	477.6	476.6
39	508.9	479.0	478.0	454.1	23.9	26.9	44.9	45.2	535.8	1677.3	1.8	0.64	3.3	20.5	52.7	540.9	1.8	0.11	0.5	3.9	475.1	474.1
40	535.8	524.0	523.0	470.0	53.0 50.0	9.0	49.1	43.0	1302.3	836.4	1.8	0.63	2.6	50.4 47.4	51.8	1306.5	1.8	0.11	1.3	3.8	520.2	519.2
41	533.0 529.1	521.0 517.0	520.0 516.0	470.0 470.0	46.0	9.0	48.8	43.2	1219.4 1104.7	849.3 852.4	1.8	0.63	2.6	47.4	51.5	1221.4 1105.6	1.8	0.11	1.2	3.8	517.2 513.3	516.2
42	525.0	517.0	510.0	470.0	42.0	9.0	47.3	43.2	993.2	851.1	1.8	0.63	2.5	39.5	50.3	991.4	1.8	0.11	1.1	3.7	509.5	508.5
44	522.5	510.5	509.5	474.5	35.1	9.0	46.4	43.0	814.0	844.6	1.8	0.64	2.4	32.6	48.8	795.2	1.8	0.11	0.8	3.3	507.3	506.3
45	519.5	507.6	506.6	490.0	16.6	9.0	44.0	43.0	364,9	844.9	1.8	0.64	2.0	14.6	45.9	336.2	1.8	0.11	0.4	2.3	505.2	504.2
46	516.9	504.9	503.9	476.2	27.6	9.0	45.4	43.0	628.2	845.2	1.8	0.64	2.3	25.3	47.7	603.7	1.8	0.11	0.6	3.0	501.9	500.9
47	514.3	502.0	501.0	475.0	26.0	9.3	45.2	43.2	587.1	862.9	1.8	0.64	2.3	23.7	47.3	559.9	1.8	0.11	0.6	2.9	499.1	498.1
48	512.1	497.5	496.5	475.0	21.5	11.6	44.7	43.4	480.4	962.6	1.8	0.64	2.3	19.2	47.3	453.3	1.8	0.11	0.5	2.8	494.7	493.7
49	542.2	508.7	507.7	472.2	35.5	30.5	46.4	45.7	825.2	1853.3	1.8	0.64	4.1	31.4	55.4	870.2	1.8	0.11	0.8	4.9	503.8	502.8
50	559.1	507.3	506.3	469.6	36.8	48.7	46.4	48.4	853.9	2819.0	1.8	0.64	5.3	31.5	60.6	954.0	1.8	0.11	0.8	6.1	501.3	500.3
51	564.8	505.0	504.0	469.7	34.3	56.8	46.2	49.9	791.3	3291.7	1.8	0.64	5.5	28.7	62.5	898.1	1.8	0.11	0.7	6.2	498.8	497.8
52	570.4	502.5	501.5	472.3	29.2	64.9	45.7	51.2	666.8	3783.7	1.8	0.64	5.4	23.7	64.4	763.9	1.8	0.11	0.6	6.0	496.5	495.5
53	575.8	500.0	499.0	473.3	25.7	72.8	45.2	52.4	579.8	4274.5	1.8	0.64	5.4	20.3	66.1	671.4	1.8	0.11	0.5	5.9	494.1	493.1
54	579.3	496.0	495.0	474.2	20.7	80.3	44.4	53.6	460.7	4764.2	1.8	0.64	5.0	15.8	67.6	533.1	1.8	0.11	0.4	5.4	490.6	489.6
55	581.0	489.0	488.0	460.0	27.9	89.0	45.4	55.1	634.8	5362.1	1.8	0.64	6.2	21.8	70.9	771.2	1.8	0.11	0.6	6.7	482.2	481.2
56	582.3 617.3	477.9 514.3	476.9	478.9 465.2	0.0 48.1	101.4	42.0 48.4	56.9	0.0	6222.4	1.9	0.65	0.0 8.6	0.0	71.1	0.0	1.9	0.11	0.0	0.0 9.6	477.9 504.7	476.9 503.7
58	593.7	511.4	513.3 510.4	469.3	41.2	100.0 79.3	48.4	56.6	973.7	6113.0 4707.5	1.8	0.63	7.1	39.5 34.1	75.1	1482.6 1188.3	1.8	0.11	0,9	8.0	503.5	502.5
59	573.1	509.0	508.0	469.6	38.4	61.1	46.7	50.9	896.2	3573.9	1.8	0.64	6.1	32.4	64.4	1041.4	1.8	0.11	0.8	6.9	502.1	501.1
60	638.6	512.0	511.0	464.3	46.7	123.6	48.0	60.0	1121.5	7874.0	1.8	0.63	9.5	37.2	78.2	1454.3	1.8	0.11	0.9	10.5	501.5	500,5
61	663.7	509.3	508.3	464.0	44.3	151.4	47.7	64.0	1056.5	10154.5	1.8	0.63	10.2	34.1	80.3	1367.7	1.8	0.11	0.9	11.1	498.2	497.2
62	678.2	505.6	504.6	469.3	35.2	169.6	46.4	66.7	818.0	11780.2	1.8	0.64	9.4	25.8	80.8	1041.0	1.8	0.11	0.7	10.1	495.5	494.5
63	690.6	502.5	501.5	469.6	31.8	185.1	45.9	69.0	731.3	13232.1	1.8	0.64	9.2	22.6	81.0	916.3	1.8	0.11	0.6	9.8	492.7	491.7
64	701.9	499.5	498.5	469.6	28.9	199.4	45.4	70.9	656.1	14589.7	1.8	0.64	8.9	20.0	81.2	810.2	1.8	0.11	0.5	9.4	490.1	489.1
65	709.1	492.7	491.7	469.8	21.9	213.4	44.7	72.5	488.9	15938.8	1.8	0.64	7.6	14.3	81.4	582.7	1.8	0.11	0.4	7.9	484.8	483.8
66	713.8	482.0	481.0	461.0	20.0	228.8	44.4	74.0	444.5	17384.5	1.8	0.64	7.3	12.7	81.7	520.1	1.8	0.11	0.3	7.6	474.4	473.4
67	681.7	518.3	517.3	462.2	55.1	160.4	49.9	65.3	1373.7	10936.0	1.8	0.63	11.8	43.3	80.7	1747.5	1.8	0.11	1.1	12.9	505.4	504.4
68	686.2	516.4	515.4	461.8	53.7	166.7	49.5	66.1	1328.6	11487.4	1.8	0.63	11.9	41.8	80.9	1690.0	1.8	0.11	1.1	12.9	503.5	502.5
69	679.9	514.0	513.0	462.0	51.0	162.9	48.8	65.6	1243.6	11145.2	1.8	0.63	11.5	39.5	80.8	1596.9	1.8	0.11	1.0	12.5	501.5	500.5
70	670.9	512.0	511.0	462.2	48.8	155.9	48.4	64.7	1180.0	10541.3	1.8	0.63	10.9	37.8	80.5	1522.2	1.8	0.11	1.0	11.9	500.1	499.1
71	712.7	516.0	515.0	460.6	54,5	193.7	49.5	70.0	1348.7	14026.8	1.8	0.63	12.9	41.5	81.3	1688.3	1.8	0.11	1.0	14.0	502.1	501.1

TABLE IIIE-B-3-4. OVERLINER TRENCH PIPE SETTLEMENT SUMMARY

Evaluation Point	Top of Waste Elevation (ft-msl)	Initial Top of Overliner Elevation (in Trench) (ft-msl)	Initial Top of Waste Below Overliner Elevation (in Trench) (ft-msl)	Bottom of Waste Elevation (ft-msl)	H _o (ft)	T _{waste} (ft)	γ _{mswb} (pcf)	γ _{mswa} (pcf)	σ' _o (psf)	Δσ (psf)	e _o	C _c	S _p (ft)	H'。 (ft)	γ' _{mswb} (pcf)	σ" _o (psf)	e' _o	α	S _c (ft)	Total Settlement (ft)	Post-Settlement Top of Overliner Elevation (in Trench) (ft-msl)	Post-Settlement Top of Waste Below Overliner Elevation (in Trench) (ft-msl)
72	716.2	513.2	512.2	460.2	52.1	199.9	49.1	70.9	1279.3	14626.5	1.8	0.63	12.8	39.2	81.4	1597.4	1.8	0.11	1.0	13.8	499.4	498.4
73	739.1	510.0	509.0	459.6	49.4	226.1	48.8	73.8	1204.7	17144.7	1.8	0.63	13.1	36.2	81.8	1482.2	1.8	0.11	0.9	14.1	495.9	494.9
74	739.2	507.0	506.0	461.4	44.6	229.2	47.7	74.2	1062.8	17460.1	1.8	0.63	12.5	32.1	81.8	1313.3	1.8	0.11	0.8	13.3	493.7	492.7
75	737.9	504.5	503.5	462.6	40.9	230.4	46.9	74.2	959.0	17548.8	1.8	0.63	11.9	29.0	81.8	1186.5	1.8	0.11	0.7	12.6	491.9	490.9
76	726.2	502.2	501.2	464.5	36.7	221.0	46.4	73.2	852.3	16640.6	1.8	0.64	10.9	25.8	81.7	1054.5	1.8	0.11	0.7	10.8	491.4	490.4
77	715.4	500.7	499.7	469.6	30.0	211.7	45.7	72.3	685.8	15759.9	1.8	0.64	9.4	20.6	81.4	840.7	1.8	0.11	0.5	9.9	490.8	489.8
78	741.6	505.6	504.6	461.5	43.1	232.9	47.7	74.4	1027.0	17782.8	1.8	0.63	12.3	30.8	81.8	1260.3	1.8	0.11	0.8	13.0	492.6	491.6
79	747.5	504.0	503.0	460.2	42.8	240.5	47.3	75.1	1012.3	18521.5	1.8	0.63	12.4	30.4	81.8	1243.0	1.8	0.11	0.8	13.2	490.8	489.8
80	749.7	502.6	501.6	459.6	42.0	244.1	47.3	75.4	993.1	18876.4	1.8	0.63	12.3	29.7	81.8	1213.2	1.8	0.11	0.8	13.1	489.5	488.5
81	749.1	501.6 499.6	500.6 498.6	459.9 459.7	40.7	244.5 246.6	46.9 46.7	75.4 75.6	955.0 907.2	18909.4 19101.9	1.8	0.63	12.1	28.6	81.8	1169.4	1.8	0.11	0.7	12.8	488.7	487.7
82	749.2 751.2	486.6	498.6	459.7	38.9 26.3	261.6	45.2	76.9	594.3	20564.1	1.8	0.64	9.2	27.1 17.1	81.8	1107.7 697.9	1.8	0.11	0.7	9.7	487.1 476.9	486.1
84	752.1	483.0	482.0	455.0	27.0	266.1	45.2	77.1	609.1	20980.9	1.8	0.64	9.2	17.1	81.8	715.7	1.8	0.11	0.4	9.7	473.1	475.9 472.1
85	741.5	508.5	507.5	455.9	51.6	230.1	49.1	74.2	1267.2	17527.4	1.8	0.63	13.6	38.0	81.8	1553.1	1.8	0.11	1.0	14.5	493.9	492.9
86	742.6	506.0	505.0	459.8	45.2	233.6	48.0	74.6	1086.6	17874.0	1.8	0.63	12.7	32.6	81.8	1332.3	1.8	0.11	0.8	13.5	492.5	491.5
87	746.4	502.6	501.6	459.7	41.9	240.8	47.3	75.1	991.5	18546.8	1.8	0.63	12.2	29.7	81.8	1213.9	1.8	0.11	0.8	13.0	489.6	488.6
88	743.1	502.3	501.3	459.9	41.4	237.8	47.3	74.9	978.3	18274.4	1.8	0.63	12.1	29.3	81.8	1197.9	1.8	0.11	0.7	12.0	490.3	489.3
89	724.3	502.1	501.1	460.2	40.9	219.2	46.9	73.2	960.4	16511.5	1.8	0.63	11.6	29.3	81.7	1196.4	1.8	0.11	0.7	12.4	489.7	488,7
90	693.4	501.9	500.9	460.5	40.4	188.5	46.9	69.3	949.0	13514.6	1.8	0.63	10.8	29.7	81.1	1202.6	1.8	0.11	0.8	12.2	489.7	488.7
91	663.4	500.6	499.6	460.6	39.0	159.8	46.7	65.3	909.6	10893.4	1.8	0.64	9.8	29.2	80.5	1174.6	1.8	0.11	0.7	11.4	489.2	488.2
92	639.5	499.3	498.3	463.2	35.1	137.2	46.4	61.9	815.4	8957.9	1.8	0.64	8.6	26.6	79.3	1052.4	1.8	0.11	0.7	10.2	489.1	488.1
93	621.5	497.2	496.2	465.0	31.2	121.3	45.9	59.7	716.4	7704.8	1.8	0.64	7.5	23.7	77.1	911.9	1.8	0.11	0.6	9.0	488.2	487.2
94	605.7	494.0	493.0	465.0	28.0	108.7	45.4	57.7	636.2	6733.2	1.8	0.64	6.7	21.3	74.9	796.5	1.8	0.11	0.5	7.3	486.7	485.7
95	585.4	490.1	489.1	463.2	25.9	92.3	45.2	55.4	584.6	5569.6	1.8	0.64	6.0	19.9	71.3	709.3	1.8	0.11	0.5	6.5	483.6	482.6
96	554.1	494.7	493.7	475.0	18.7	56.4	44.2	49.9	413.5	3272.4	1.8	0.64	4.0	14.7	60.6	444.7	1.8	0.11	0.4	4.4	490.3	489.3
97	676.0	496.7	495.7	469.9	25.8	176.3	45.2	67.6	582.8	12377.6	1.8	0.64	7.9	17.9	80.8	724.5	1.8	0.11	0.5	8.3	488.4	487.4
98	621.5	495.3	494.3	473.8	20.5	123.2	44.4	60.0	455.8	7854.7	1.8	0.64	5.9	14.7	76.9	562.9	1.8	0.11	0.4	7.0	488.3	487.3
99	748.2	496.7	495.7	462.8	32.9	248.5 ·	45.9	75.8	756.3	19289.1	1.8	0.64	10.6	22.3	81.8	913.4	1.8	0.11	0.6	11.2	485.5	484.5
100	741.4	495.9	494.9	469.8	25.1	242.5	45.2	75.3	566.1	18710.4	1.8	0.64	8.7	16.4	81.8	669.1	1.8	0.11	0.4	10.5	485.4	484.4
101	755.0	495.7	494.7	459.9	34.8	256.3	46.2	76.4	802.6	20042.1	1.8	0.64	11.1	23.6	81.8	967.0	1.8	0.11	0.6	11.7	484.0	483.0
102	755.5	493.8	492.8	459.5	33.3	258.7	46.2	76.6	768.1	20277.5	1.8	0.64	10.8	22.5	81.8	918.2	1.8	0.11	0.6	11.4	482.4	481.4
103	724.3	489.7	488.7	455.3	33.4	231.6	46.2	74.4	770.5	17682.8	1.8	0.64	10.4	23.0	81.8	939.0	1.8	0.11	0.6	11.0	478.7	477.7
104	744.9	488.6	487.6	459.5	28.1	253.3	45.4	76.3	638.5	19777.4	1.8	0.64	9.6	18.5	81.8	757.8	1.8	0.11	0.5	10.0	478.6	477.6
105	673.9	489.3 485.9	488.3	454.6	33.7	181.6	46.2	68.4	777.2	12891.1	1.8	0.64	9.5	24.2	81.0	979.6	1.8	0.11	0.6	10.1	479.2	478.2
106	618.0 587.9	485.9	484.9 483.7	456.8 456.9	28.1	129.1 100.2	45.4 45.2	60.8 56.6	639.2	8311.6 6124.3	1.8	0.64	7.3 6.3	20.8	78.0 73.2	812.6 747.8	1.8	0.11	0.5	7.8 6.9	478.1 477.8	477.1 476.8
107	553.5	483.8	483.7	456.8	26.8	66.7	45.2	51.5	586.9	3894.0	1.8	0.64	5.2	20.4	64.4	669.0	1.8	0.11	0.5	6.0	477.8	476.8
109	529.1	481.2	480.2	456.0	24.2	44.9	44.9	47.7	544,4	2600,6	1.8	0.64	4.2	20.8	58.0	581.6	1.8	0.11	0.5	4.7	476.5	475.5
109	747.1	+01.2	1 +00.2	450.0	44.4	1 44.7	44.7	1 47.7	1 344.4	2000.0	1.0	1 0.04	1 4.2	20.1	1 30.0	0.100	1.0	0.11	1 0.3	1 4./	1 4/0.3	4/3.3

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-B-3 TABLE IIIE-B-3-5. OVERLINER PIPE SLOPE SUMMARY

Evalua	tion Point	Initial Top of Elevation (ft-r	in Trench)		,	Plan View Distance (ft)	Initial Slope (%)	Post-Settlement Slope (%)
A	В	A	В	A	В			
1	2	520,7	519.0	517.0	512.2	155.89	1.1	3.04
2	3	519.0	516.5	512.2	507.4	160.28	1.6	3.04
3	4	516.5	514.0	507.4	502.3	184.49	1.4	2.76
4	5	514.0	511.5	502.3	498.6	176.18	1.4	2.11
5	6	511.5	509.0	498.6	495.6	131.43	1.9	2,27
6	7	509.0	506.6	495.6	493.7	127.94	1.9	1.49
7	8	506.6	504.0	493.7	491.9	117.85	2.2	1.47
8	9	504.0	501.3	491.9	490.5	154.80	1.7	0.91
9	10	501.3	500.7	490.5	490.0	218.83	0.3	0.24
10	11	500.7	500.0	490.0	489.8	233.99	0.3	0.08
11	12	500.0	497.7	489.8	488.2	199.97	1.1	0.80
12	13	497.7	497.0	488.2	487.7	161.14	0.5	0.31
13	14	497.0	494.0	487.7	485.1	154.24	1.9	1.67
14	15	494.0	493.3	485.1	485.1	181.35	0.4	0.01
15	16	493.3	492.0	485.1	484.8	1592.12	0.1	0.02
16	17	492.0	489.0	484.8	482.5	148.87	2.0	1.53
17	18	489.0	486.0	482.5	480.4	209.24	1.4	1.01
18	19	486.0	483,4	480,4	478.4	149.47	1.8	1.35
20	21	522.1	520,7	518.3	513.8	151.84	0.9	2.98
21	22	520.7	518.0	513.8	507.4	227.77	1.2	2.80
22	23	518.0	515.7	507.4	502.4	245.23	0.9	2.04
23	24	515.7	514.0	502,4	499.9	181.82	0.9	1,38
24	25	514.0	511.6	499.9	497.2	181.22	1.3	1.50
25	26	511.6	509.0	497.2	495.2	181.82	1.4	1.08
26	27	509.0	506.6	495.2	493,5	217.69	1.1	0.79
27	28	506.6	504.6	493.5	492.4	202.76	1.0	0.55
28	29	504.6	502.5	492,4	491.3	181.87	1.1	0.60
29	30	502.5	501.1	491.3	490.6	141.55	1.0	0.44
30	31	501.1	498.5	490.6	489.3	110.66	2.3	1.24
31	32	498.5	496.2	489.3	488.0	83.07	2.8	1.52
32	33	496.2	494.1	488.0	487.1	144.85	1.4	0.64
33	34	494.1	491.3	487.1	484.7	138.84	2,0	1.68
34	35	491.3	487.7	484.7	481.6	149.72	2.4	2.12
35	36	487.7	486.0	481.6	480.3	100.26	1.7	1.21
36	37	486.0	484.0	480.3	479.0	93.21	2.2	1.47
37	38	484.0	482.0	479.0	477.6	95.62	2.1	1.48
38	39	482.0	479.0	477.6	475.1	84.80	3.5	2.85
40	41	524.0	521.0	520.2	517.2	164.12	1.8	1.79
41	42	521.0	517.0	517.2	513.3	159.66	2.5	2.44
42	43	517.0	513.0	513.3	509.5	198.74	2.0	1.95
43	44	513.0	510.5	509.5	507.3	140.56	1.7	1.55
44	45	510.5	507.6	507.3	505.2	182.88	1.6	1.12
45	46	507.6	504.9	505.2	501.9	175.15	1.5	1.88
46	47	504.9	502.0	501.9	499.1	175.57	1.7	1.63
47	48	502.0	497.5	499.1	494.7	188.27	2.4	2.34
49	50	508.7	507.3	503.8	501.3	102.99	1.3	2.43
50	51	507.3	505.0	501.3	498.8	150.57	1.6	1.68
51	52	505.0	502.5	498.8	496.5	149.43	1.7	1.53
52	53	502.5	500.0	496.5	494.1	142.29	1.8	1.65
53	54	500.0	496.0	494.1	490.6	91.36	4.4	3.83
54	55	496.0	489.0	490.6	482.2	78.70	8.9	10.66
55	56	489.0	477.9	482.2	477.9	50.28	21.9	8.56

Chkd By: DEP Date: 1/23/2022

TABLE IIIE-B-3-5. OVERLINER PIPE SLOPE SUMMARY

Evalua	tion Point	Initial Top o Elevation (i	in Trench)	Overliner E Tre	nent Top of levation (in nch) nsl)	Plan View Distance (ft)	Initial Slope (%)	Post-Settlement Slope (%)
A	В	A	В	A	В			
57	58	514.3	511.4	504.7	503.5	195.19	1.5	0.63
58	59	511.4	509.0	503.5	502.1	168.61	1.4	0.79
59	50	509.0	507.3	502.1	501.3	128.05	1.3	0.66
57	60	514.3	512.0	504.7	501.5	147.57	1.6	2.13
60	61	512.0	509.3	501.5	498.2	176.91	1.5	1.91
61	62	509.3	505.6	498.2	495.5	220.81	1.7	1.23
62	63	505.6	502.5	495.5	492.7	175.01	1.8	1.60
63	64	502.5	499.5	492.7	490.1	160.44	1.8	1.62
64	65	499.5	492.7	490.1	484.8	110.48	6.2	4.79
65	66	492.7	482.0	484.8	474.4	85.16	12.6	12.17
67	68	518.3	516.4	505.4	503.5	111.94	1.7	1.70
68	69	516.4	514.0	503.5	501.5	132.39	1.8	1.49
69	70	514.0	512.0	501.5	500.1	129.34	1.5	1.12
70	61	512.0	509.3	500.1	498.2	180.14	1.5	1.07
71	72	516.0	513.2	502.1	499.4	187.58	1.5	1.41
72	73	513.2	510.0	499.4	495.9	204.45	1.6	1.70
73	74	510.0	507.0	495.9	493.7	178.29	1.7	1.25
74	75	507.0	504.5	493.7	491.9	146.05	1.7	1.23
75	76	504.5	502.2	491.9	491.4	154.46	1.5	0.33
76	77	502.2	500.7	491.4	490.8	105.41	1.5	0.61
77	64	500.7	499.5	490.8	490.1	93.11	1.2	0.76
78	79	505.6	504.0	492.6	490.8	132.32	1.2	1.33
79	80	504.0	502.6	490.8	489.5	137.18	1.0	0.94
80	81	502.6	501.6	489.5	488.7	132.22	0.8	0.62
81	82	501.6	499.6	488.7	487.1	100.00	2.0	1.60
82	83	499.6	486.6	487.1	476.9	134.92	9.6	7.56
83	84	486.6	483.0	476.9	473.1	119.25	3.0	3.21
85	86	508.5	506.0	493.9	492.5	158.84	1.5	0.88
86	87	506.0	502.6	492.5	489.6	197.16	1.7	1.48
87	82	502.6	499.6	489.6	487.1	162.62	1.8	1.52
88	89	502.3	502.1	490.3	489.7	147.95	0.1	0.38
89	90	502.1	501.9	489.7	489.7	130.75	0.2	0.02
90	91	501.9	500.6	489.7	489.2	123.49	1.1	0.40
91	92	500.6	499.3	489.2	489.1	98.22	1.3	0.10
92	93	499.3	497.2	489.1	488.2	77.86	2.7	1.16
93	94	497.2	494.0	488.2	486.7	83.92	3.8	1.77
-94	95	494.0	490.1	486.7	483.6	107.61	3.6	2.89
95	35	490.1	487.7	483.6	481.6	90.19	2.7	2.27
48	96	497.5	494.7	494.7	490.3	168.69	1.7	2.60
97	98	496.7	495.3	488.4	488.3	223.58	0.6	0.03
99	100	496.7	495.9	485.5	485.4	138.53	0.6	0.10
100	65	495.9	492.7	485.4	484.8	170.94	1.9	0.37
99	101	496.7	495.7	485.5	484.0	155.62	0.6	0.99
101	102	495.7	493.8	484.0	482.4	85.25	2.2	1.84
103	104	489.7	488.6	478.7	478.6	188.95	0.6	0.08
104	83	488.6	486.6	478.6	476.9	131.51	1.5	1.24
105	106	489.3	485.9	479.2	478.1	223.76	1.5	0.51
106	107	485.9	484.7	478.1	477.8	122.29	1.0	0.19
107	108	484.7	483.8	477.8	477.8	140.89	0.6	0.03
108	109	483.8	481.2	477.8	476.5	108.93	2.4	1.19

0:\0023\404\EXPANSION 2021\PART III\IIIE\SHEET IIIE-B-3-22.dwg. iwilson. 1:8

NOTE

- 1. EXISTING CONTOURS AND ELEVATIONS PROVIDED BY COOPER AERIAL SURVEYS, CO FROM AERIAL PHOTOGRAPHY FLOWN 11-16-2020.
- 2. EXCAVATION SLOPES AND SLOPES OUTSIDE THE LIMIT OF WASTE (e.g., CHANNELS) ARE TYPICALLY 3H:1V.
- 3. LINER AND LEACHATE COLLECTION SYSTEM DETAILS ARE PRESENTED IN APPENDIX IIIA—A—LINER, OVERLINER AND FINAL COVER SYSTEM DETAILS.

DRAFT
STORY PREMITTING PURPOSES ONLY
ISSUED FOR CONSTRUCTION

DATE: 1/2022
PIE: 0/2024-040-11
CAD: SHEET IIIE-B-3-23.DWG

DRAWN BY: SRF
DESIGN BY: MB
REVIEWED BY: DEP

Weaver Consultants Group
TBPE REGISTRATION NO. F-3727

DRAWN BY: SRF
DESIGN BY: MB
REVIEWED BY: DEP

WWW.WCGRP.COM

SHEET IIIE-B-3-23

0:\0023\404\EXPANSION 2021\PART III\IIIE\SHEET IIIE-B-3-23.dwg, jwilson, 1:2

COPYRIGHT © 2022 WEAVER CONSULTANTS GROUP. ALL RIGHTS RESERVED.

0:\0023\404\EXPANSION 2021\PART III\IIIE\SHEET IIIE=B-3-25 dww. iwilson 1:2

0:\0023\404\EXPANSION 2021\PART III\IIIE\SHEET IIIE-B-3-26.dwg. iwilson, 1:2

COPYRIGHT © 2022 REPUBLIC WASTE SERVICES OF TEXAS, LTD. ALL RIGHTS RESERVED

SECTOR 2B/3-A PIPE PROFILE

SECTOR 2B/3-B PIPE PROFILE

DAVID E. POE

SECTOR 2B/3-E PIPE PROFILE

SECTOR 2B/3-F PIPE PROFILE

<u>LEG</u>	<u>END</u>	SCA	LE (ALL PRO	OFILES)
		0	100	200
	AT CONSTRUCTION GRADE		SCALE IN FEET	HORIZONTAL
	AFTER SETTLEMENT GRADE	0	10	vertical
			SCALE IN FEET	

DRAFT DRAFT DRAFT		REPU		PREPARED FOR ITY OF ARLINGTON AND STE SERVICES OF TEXAS, LTD	٥٧
DATE: 01/2022	DRAWN BY: RAA			REVISIONS	
FILE: 0023-404-11	DESIGN BY: MB	NO.	DATE	DESCRIPTION	
CAD: SHEET IIIE-B-3-7.DWG	REVIEWED BY: DEP				
Weaver Consu	iltants Group				
TBPE REGISTRATION					140404/ 1
IBPE REGISTRATION	NO. F-3/2/				www.\

MAJOR PERMIT AMENDMENT OVERLINER SETTLEMENT ANALYSIS OVERLINER PIPE PROFILE

CITY OF ARLINGTON LANDFILL TARRANT COUNTY, TEXAS

WWW.WCGRP.COM

SHEET IIIE-B-3-28

SECTOR 1A/2A-C PIPE PROFILE

LEGEND

SCALE (ALL PROFILES)

O 100 200
HORIZONTAL

SCALE IN FEET

O 10 20
VERTICAL

SCALE IN FEET

DRAFT FOR PERMITTING PURPOSES ONL ISSUED FOR CONSTRUCTION	Y	REPU		PREPARED FOR IY OF ARLINGTON AND TE SERVICES OF TEXAS, LTD	OVI
DATE: 01/2022	DRAWN BY: RAA			REVISIONS	
FILE: 0023-404-11	DESIGN BY: MB	NO.	DATE	DESCRIPTION	
CAD: SHEET IIIE-B-3-8.DWG	REVIEWED BY: DEP				
Weaver Consulta	ents Groun				
TBPE REGISTRATION NO.					www.v

MAJOR PERMIT AMENDMENT
OVERLINER SETTLEMENT ANALYSIS
OVERLINER PIPE PROFILE

CITY OF ARLINGTON LANDFILL TARRANT COUNTY, TEXAS

.wcgrp.com SHEET IIIE-B-3-29

COPYRIGHT © 2022 REPUBLIC WASTE SERVICES OF TEXAS, LTD. ALL RIGHTS RESERVED.

SECTOR 1B-B PIPE PROFILE

DAVID E. POE
81734

SOIONALENG

5-19-2022

SECTOR 1B-A PIPE PROFILE

LEGEND

AT CONSTRUCTION GRADE

AFTER SETTLEMENT GRADE

SCALE (ALL PROFILES)

0 100 200
HORIZONTAL

SCALE IN FEET

VERTICAL

SCALE IN FEET

DRAFT X FOR PERMITTING PURPOSES OF ISSUED FOR CONSTRUCTION	ILY	REPL	•	PREPARED FOR TY OF ARLINGTON AND STE SERVICES OF TEXAS, LT	MAJOR F
DATE: 10/2021	DRAWN BY: RAA			REVISIONS	OVERLII
FILE: 0023-404-11	DESIGN BY: MB	NO.	DATE	DESCRIPTION	7
CAD: SHEET IIIE-B-3-9.DWG	REVIEWED BY: DEP				CITY OF
Weaver Consul	ants Group				TARRA
TBPE REGISTRATION NO	1				WWW.WCGRP.COM

MAJOR PERMIT AMENDMENT OVERLINER SETTLEMENT ANALYSIS OVERLINER PIPE PROFILE

CITY OF ARLINGTON LANDFILL TARRANT COUNTY, TEXAS

P.COM SHEET IIIE-B-3-30

COPYRIGHT © 2022 REPUBLIC WASTE SERVICES OF TEXAS, LTD. ALL RIGHTS RESERVED.

APPENDIX IIIE-B-4 FOUNDATION HEAVE ANALYSIS

Includes pages IIIE-B-4-1 through IIIE-B-4-4

DAVID E. POE
81734
SOIONAL ENGINEERS
5-19-2022

Prep By: MB Date: 1/21/2022

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-B-4 FOUNDATION HEAVE

Chkd By: DEP Date: 1/21/2022

Required:

Estimate the potential heave of the bottom of excavation resulting from the removal of overburden soils during liner construction.

Method:

Heave will be analyzed for the proposed excavation in Sector 11 (West Expansion Area).

References:

- 1. Terzaghi, Karl and Peck, Ralph, Soil Mechanics in Engineering Principle, Third Edition, John Wiley and Sons, Inc, New York, 1996.
- 2. Das, Braja M., Principles of Geotechnical Engineering, Fourth Edition, PWS, Boston, 1998.
- 3. Day, Robert W., Geotechnical Engineer's Portable Handbook, McGraw-Hill, New York, 2000.
- 4. Dunn, I.S., Anderson, L.R., and Kiefer, F.W., Fundamentals of Geotechnical Analysis, 1st Edition, 1980.
- 5. Coduto, Donald P., Geotechnical Engineering Principles and Practices, 1999.
- 6. Acar, Yalcin B.& Daniel, David E., Geoenvironment 2000 Characterization. Containment, Remediation, and Performance in Environmental Geotechnics, Volume 2, American Society of Civil Engineers, 1995.
- 7. Golder Associates, City of Arlington Landfill, Major Permit Amendment, 2014.

Foundation Heave Calculations

Estimate the potential heave of the excavation bottom in Sector 11.

Note:

Evaluation location for the heave analysis is the shown as on Figure IIIE-B-4-4 (Heave

Analysis Point 1)

Method:

Excavation for liner construction will result in reduced overburden pressure on subgrade strata which may result in heave.

- A. Select critical location for heave. The critical location is established as the location that has the estimated highest overburden pressure relief resulting from landfill excavation prior to liner installation. For this analysis it was assumed this point is in Sector 11 (West Expansion Area).
- B. Use unit weight values for the excavated soils and consolidation parameter values derived from available field and laboratory results presented in Appendix IIIE-C.
- C. Stratum elevations, thicknesses, and water table are shown on the below diagram.

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-B-4 FOUNDATION HEAVE

Chkd By: DEP Date: 1/21/2022

Solution:

Diagram for Heave Analysis in Sector 11 (West Expansion Area)

Definition of Terms/Variables:

 e_0 = initial void ratio

 γ_d = Dry Unit Weight (pcf)

 γ_{moist} = Moist Unit Weight (pcf)

 γ_{sat} = Saturated Unit Weight (pcf)

 γ_w = Unit Weight of Water (pcf)

 γ_{waste} = Unit Weight of Waste (pcf)

 γ_I = Assumed Unit Weight Stratum I (pcf)

 γ_{II} = Assumed Unit Weight Stratum II (pcf)

 γ_{III} = Assumed Unit Weight Stratum III (pcf)

P_o = Initial Average Effective Overburden Pressure (psf)

P_c = Preconsolidation Pressure (psf) (pressure in excess of overburden pressure, assumed zero)

 ΔP = Change in Vertical Pressure (psf)

D = depth of excavation

D_I = Overburden depth of Stratum I (ft)

D_{II} = Overburden depth of Stratum II (ft)

H_i = thickness of soil layer (Stratum II thickness analyzed for heave)

C_r = Recompression index (rebound portion of consolidation curve during unloading)

 $C_c = Compression Index$

Prep By: MB Date: 1/21/2022

CITY OF ARLINGTON LANDFILL 0023-404-11-102 APPENDIX IIIE-B-4 FOUNDATION HEAVE

Chkd By: DEP Date: 1/21/2022

Based on the laboratory test results included in Appendix IIIE-C and Section 3 of the appendix, the material properties of the soil overburden material to be excavated during liner construction are shown in following table:

	e_0	γ _d (pcf)	γ _m (pcf)	γ _{sat} (pcf)	C_c	C_{r}
Stratum I (Overburden Soil (Four Layers of CL,CH, SP and MH))			128	131	na ²	na²
Stratum II (Weathered Shale)	0.6		122.5	137	0.16	0.05
Stratum III (Unweathered Shale)	0.6		128	142	0.16	0.05

¹Average unit weight for four layers is used.

The following parameters were used for Stratum II heave calculations:

$$H_i = 200$$
 ft $e_o = 0.6$ $C_r = 0.0500$ Pc = 7,200 psf (From lab testing, not used).

Estimate Potential Maximum Heave of the Excavation Bottom

The change in loading is due to the excavation of overburden soils.

Using the standard consolidation theory:

$$S=~C_r~H_i~log~((P_o$$
 - $\Delta P)~/~P_o)~~(at~midpoint~of~Stratum~III)
$$P_o=~((H_i/2\text{-}2)*(\gamma_{III(sat)}\text{-}~\gamma_{(w)}~)+~2"*(\gamma_{II(sat)\text{-}}\gamma_{(w)})+~\Delta P$$

$$P_o=~~11,660.00~~psf$$

$$S=~~-1.66~~ft$$$

Projected Heave ¹ =	-1.66	ft	or	-20.0	inches
Trojecteu Heave	-1.00	11	01	-20.0	menes

¹ Negative value represents heave or uplift of excavated foundation. Note that heave will be recovered during settlement of sector. As the settlement analysis conservatively does not incorporate actual preconsolidation stresses on formation, the actual heave and settlement will be less than calculated.

²Consolidation parameters are not needed for Stratum I as this analysis assumes stratum will be removed entirely from the landfill floor during excavations.

APPENDIX IIIE-C LABORATORY TEST RESULTS

Includes pages IIIE-C-1 through IIIE-C-159

LABORATORY TESTING

Introduction

Various geotechnical and geological investigations have been conducted at the City of Arlington Landfill to characterize the subsurface conditions at the site. Based on the previous investigations, the site-specific near-surface soils have been divided into three distinct stratigraphic strata. Description of the strata is provided in Appendix IIIE, Section 3, as well as in Appendix IIIG – Geology Report. Copies of the lithological logs, geological sections, maps of regional geology, and in-depth description of the various strata is provided in Appendix IIIG-Geology Report and has not been reproduced for this appendix.

Geotechnical Data Summary

A summary of the geological field and laboratory testing is provided for each stratum in Section 3 of this appendix, including physical description of the individual stratum and a summary of laboratory testing results for the individual stratum. Further description and background information (e.g., logs, geological cross-sections) is provided in Appendix G – Geology Report.

While the majority of geotechnical test results (both field and laboratory) available for the landfill are summarized in the logs presented in Appendix IIIG – Geology Report, the geotechnical laboratory test results have been compiled and presented in this appendix. Logs of slug tests and permeability tests have been excluded from the results compiled in this appendix as they are not applicable to the stability and settlement analyses presented in this appendix. The information compiled for this appendix was excerpted from the document <u>City of Arlington Landfill</u>, <u>Tarrant County – MSW Permit No. 358B</u>, <u>Part III</u>, <u>Attachment 4 – Geology Report</u>, prepared by Golder Associates, February 2014.

City of Arlington Landfill MSW Permit No. 358B Part III, Attachment 4 Geology Report

APPENDIX 4-C LABORATORY TESTING DATA

GOLDER ASSOCIATES INC. Geoscience Firm Registration Certificate Number 50369

Boring/							Perce	at Finer	Unconfined
Exploration	Sample	Liquid	Piastic	Plasticity	Moisture	Unit Dry	Percent	Percent	Compressive
Point	Depth	Limit	Limit	Index	Content	Weight	Passing	Passing	Strength
No.	(ħ)·	(LL)	(PL)	(PI)	(%)	(pcf)	//200	/40	(tsf)
G-1	18.2					,	87		
G-1	5.0	21	18	3	20 .		46		
G-1	18.2	41	21	20	17	122.9	87		
G-I	28.3				.14	122.5	63		
G-2	3.5						46		
G-2	3.8	19	14	5	19				
G-2	18.9		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	;	23	108.7			
G-2	26.8						73		••••••••••••
G-3	19,0	51	17	34			90	<u>.</u>	1
G-3	24,0	51	17	34	19	114.0	86		
G-3	34.0	33	13	20	21	113.7	73		·
′ G-3	35.5	32	13	19			73		1
G-3	44,0	18	18	NP			33	,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************************************
G-3	55.0	,					9		i i
G-3	60.8	50	23	27	19	114.5			
G-3	62.0	46	26	· 20	19	117.8	97	:	•
G-4	B.5	18	14	4	13		54	·	
G-4	9.2				12	116.1		······································	
G-4	13.7	35	17	18	19	111.8	76 .	·	<u></u>
G-4	25.2			,	17	104.0			
G-4	30.9		*******************		13	117.4		• · · · · · · · · · · · · · · · · · · ·	
G-5	5.0	25	25	NP	25		42		i i
G-5	8.5		***************************************				4		ì
G-5	11.9				15	127.9			
G-6	4.0	22	18 .	4	18		45		
G-6	8.5	57	24	33	26	. 98.4	95'		
G-6	14.0				10	134.8			
G-6	15.6		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		19	119.6			
G-7	3.8	49	16	33	23	103.3	83		
G-7	8.5	21	13	8	15	116.9	46		
G-7	9.6	17.	14	3			46	,	
G-7	15.0		(mandy as a fire of the fire o		*******************************		7		:
G-7	27.2	36	15	21			97		
G-7	29.1	36	15	21					
G-8	3.5	51	17	34	27		75		
G-8	19.0				10	121.7			1
G-8	25.2	45	18	27	12	129.3			-
MW-1	10.0	13	12	1			23		
MW-1	16,0	48	17	31	15		22	************	
MW-1	24.0	17	12	5	19	125.6	55		·····

Summary of Material Properties
Arlington Landfill
Tarrant County, Texas

February 7, 1994

Sheet 1 of 2

PROJECT NO. 1019-002-002

Floure 4-E.1

Boring/							Percen	t Finer	Unconfined
Exploration	Sample	Liquid	Plastic	Plasticity	Moisture	Unit Dry	Percent	Percent	Compressi
Point	Depth	Limit	Limit	Index	Content	Weight	Passing	Passing	Strength
No.	(ħ)	(LL)	(PL)	(PI)	(%)	(pcf)	#200	#40	(ts1)
MW-2	13.0	29	. 12	17	17	117.7	61		
MW-2	18.0	18	13	5	16		35	,	
MW-2	26.0	30	11 .	19	21		66		
MW-2	37.5	17	16	1	18	,	34		
MW- 2	45.5						56		
MW- 2	47,5						58		
MW-3	16.0	39.	13	26	21	123.2	69		
MW-3	26.0	35	13	22	17		65		İ.,
MW- 3	38.0	62	22	40	26	117.8	92		
MW-3	51.0	27	17	10			53		
MW- 4	15.0	57	19	38	25		85		
MW-4	35.0	29	14	15	20		61		j
MW-4	38.0	23	17	6			31]
MW- 5	12.0	58	21	37	26	101.1	83		
MW-5	38.0	51	17	34	23		86		
MW-5	55.0	48	20	28	27		84		
MW-5	61.0	32	15	17	· · · · · · · · · · · · · · · · · · ·		62		
MW-6	4.0	23	16	7	; ; ;	;	52		
MW-6	12.0	59	23	36	22		95		
MW-6	30.0	21	18	3		(-,,,	39	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
MW-7	4.5	31	13	18	19	108.4	66		
MW-7	20.5	28	12	16	15		53		
MW-7	24.5	26	13	13	39	h	50		
MW-7	29.0						53	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
MW-7	31.0		********************			1	15		
MW-8	7.0	39	15	24	15	128.0	76		
MW-8	20.0	29	15	14	<u></u>		52		
MW-9	4.0	51	18	33	15	134.0	82		
MW-9	13.0	37	15	22	19		74		
	21.0	31	13	18	13		60	·	
MW-9	6.0	52	18	34	24	1	97		i
MW-10	16.0	34	13	21	17	<u> </u>	82	·	
MW-10		56	17	: 39	21	÷	90	·	
MW-10	29,0	JU				<u> </u>	4		1
MW-10 MW-10	39.0 40.5		************************		ļ	ļ	65		

Summary of Material Properties
Arlington Landfill
Tarrant County, Texas

February 7, 1994

Sheet 2 of 2

PROJECT NO. 1019-002-002

Figure 4-E.2

Boring/ Exploration	C1					1	Percen	it Finer	Unconfined
Point	Sample	Liquid	Piastic	Plasticity	Moisture	Unit Dry	Percent	Percent	Compressiv
No.	Depth	Limit	Limit	Index	Content	Weight	Passing	Passing	Strength
140.	(ft)	(LL)	(PL)	(PI)	(%)	(pcf)	#20 0	#40	(tsf)
MW- 2	13.0	29	12	17	17	117.7			
MW- 2	18.0	18	13	5	16	i	61 35	*****************	
MW-2	26.0	30	11	19	21	ļ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
MW-2	37.5	17	16	1	18	}	66		ļ
MW- 2	45.5		-				34	->	ļ
MW- 2	47.5				*******************		56		ļ
MW-3	16.0	39,	13	26	21	102.0	58	***************************************	
MW-3	26,0	35	13	22		123.2	69		
MW-3	38.0	62	22	40	17 26		65		
MW- 3	51.0	27	17	10	20	117.8	92		
MW- 4	15.0	57	19	38				***************************************	*** (***/*******************
MW- 4	35.0	29	14	15	25		8.5		
MW- 4	38.0	23	17	6	20	<u>-</u>	61		**
MW- 5	12.0	58	21	37			31	~	*************************
MW- 5	38.0	51	17	34	26	101.1	83		
MW-5	55,0	48	20	28	23	······	86		······································
MW- 5	61.0	32	15		27		84		
MW-6	4.0	23	16	17		·	62		
MW- 6	12.0	59	23	7 36			52		***************************************
MW-6	30.0	21	18		22	······································	95		******************************
MW- 7	4.5	31	13	3			39		
MW- 7	20.5	28	12	18	. 19	108.4	66		
MW- 7	24.5	26	13		15		53		
MW- 7	29.0	·······		13	39		50		
MW- 7	31.0						53		
MW- 8	7.0	39	15	31			15		
MW-8	20.0	29	15	24	15	128.0	76		
/IW-9	4.0			14			52		
/W-9	13.0	37	18 15	33	15	134.0	82		
∕W- 9	21.0	31	,	22	. 19		74		
fW-10	6.0		13	18	13		. 60		
1W-10	16.0	52	. 18	34	24		97		
		34	13	21	17		82		
***************************************	29.0	56	17	.,	21		90		***************************************
	39.0						4		***************************************
W-10	40.5	<u></u>		i	-		65		***************************************

Summary of Material Properties
Arlington Landfill
Tarrant County, Texas

February 7, 1994

Sheet 2 of 2

PROJECT NO. 1019-002-002

Figure 4-E.2

City of Arlington Landfill MSW Permit No. 358B Part III, Attachment 4 Geology Report

LABORATORY DATA SUMMARY SHEET

Permit Issued: February 12, 2014

	Permeability (cro/sec)			\prod	T	T			1	T	Τ		T	\exists	T	T	T	7	T	T		7	
	200	a', (bsd)	+	H	+	+	-	+	+	-	-		4	+	-	+	_	-	_	\sqcup			
	1 1	5	-	$\mid + \mid$	+	H	\dashv	+	+	+		+	+	\perp	+	_	-	_	\downarrow				DFILL
	g	ક	+	-	-	H	+	+	+	+		-	+	\downarrow	\downarrow	_	ig	L	_				N LAN
	1 L	- Abe	+	-	+	\vdash	+	+	+	-	4	-	+	+	+	+	-	_	_				LINGTC
	Confining	1 1	+	\dashv	+	+	+	+	+		+	-	+	+	\downarrow	_	-]]]	Project CITY OF ARLINGTON LANDFILL
	1116		+	+	+	-	+	+	+	H	+	_	+	+	\downarrow	_	-	_					Ή C
	UCS / UU / CU Trimosal CU		++	+	+	+	+	+	-		-	+	+	-	-	_	_			_	_		Projec
	UCS 7 UD		++	+	+	+	+	+	-		+	+	-	-	_	ļ				\perp			
	U.SC. U. (7x9)	\vdash	$\dagger \dagger$	+	H	+	+	\vdash	-	-	+	+-	-	-	-			4	_	1	44		
	Moiss Unitwe (UC		+	+	+	+	+	-	13 43	-	+	+	-	_				4	_	_	1		
SULTS	Dy Unit wit	-	$\vdash \vdash$	-	\vdash	+	+		1327		-	-	_			_		_		\perp	$\perp \downarrow$		
SUMMARY OF SOIL DATA AND LABORATORY TEST RESULTS			9	+-1		+			116.8	-	\downarrow	_			1					\perp			
RY TE	1 58	\dashv	6.89	\perp	_	\perp																	
RATO	Panide S Gravel Sand (%) (%)	- -	0.0	$\left - \right $	+				_	_										1	H		
LABO	253U (S2S)	+	- 6	H	+	-			-	-	\vdash	$ \cdot $	_	_ -		1	1	1					
A AND	Atterberg Limits		0,10				1	1	\pm	+	╁		\dashv	-	+	+	+	+	+				
L DAT	Atterne		δ <u>ε</u>	-	+		+	+	+	F			1		1	_	1	1	1				
)F SOI	=		\$	-	-	H	-	-	7	+		1	#				_	1					
IARY C	į						aue cape																
SUMN	Soil Description	(SP-8C)				GRY, Week weathered SANDSTONE and SHALE Subsection	200									ľ				מים פנים.			
	Soli Description doth brown, surp	Compact from pacety-graded SAND with day (SP-SC) Hard, sarby feat CLAY (CL), mods:		Hard, light gray, tat CLAY with swind (CH), shaley		SHA SHA								100						siteroedaed win seams of Emergine selecten 75,0 and 86,0			
	Soli De	Paced SAN) puss the		NOTSEN								hby we sam			1: 55.CF	and 50.5"		ame zen			
	d, brown te	h. pactiy-p		ta CLAY.		thered, S.A.								PALE, sky			catheren:	7.75 and		ire of Sm.			
	Sit to very hang, bro	Compact Brown, pacify-graded SA: Haid, saidy lean CLAY (CL), moist		light gray,		Webk wea	, ied							Dark gray, weak, SPALE, 45thly weethered			medium strang, unvestible ed at 55,0°	Imentanc scam at 67,75		ed with se			
,	toisture Content (%) 6.3 Sast	13.4 Cem 18.1 Hard	15.7	- L	1		- Indian				_	_	-	Dark St	ļ.,		medom	imentan.		nteroeda	$\int \!\! \int$		
	SPT N	2	2 2	-	1 1	15.5	is:	13.5	$\left - \right $		-	-	-	7	-						\prod		
	SS SS		8 8	+	SS S		SS Refusal	CORE	CORE	CORE	SS Dahees	RE	벁	Return	32	D)	3		ui-	<u>ui li</u>	,	H	tes
		-	450.0	+-+	477.5	-	472.5	-71.0 CC	46E.0 CO			10	O CORE	SS	5 CORE	0 CORE	O CORE	· 1		CORE	1 1	(Colder	Oci
	 					1	1		- 1	L	5 451.0		0 446.0	5 441.0	439.5	436.0	431.0	_	ı	416.0		Ğ.	ASS
			8.0-7.5 8.0-10.0		18.5-20.0	-	22.5-25.0	25.0-30.0	30.0-35.0	35.6-40.0	45,0-46,5	46.5-50.0	50.0-55.0	55,0-55,5	36.5-50.G	60.0-65.0	65.0.70.0		70.0-75.0	30.0-85.0 30.0-85.0		W.	
	62		4 0>	┝╌┟╴	V 1		10	n l	£ .	:	12	55	Ā			-	5		μ <u>;</u>	\$ 22	7 1		9
	Borehale Mumber 8-10:	5 4	191-9 191-9	B-101	9-101	Ę.	5-101	8-40	a-10-1	1 1 1 1 1 1 1	B.10%	B.:C;	5-101	127	9-10:	191-191	3.16:	1000	5 6	5	11		1

		(cm/sec)	T						T	T		
	4	· -	(isd) a	\dagger	+	\dagger	+	+	+	+		
	fion	- 1	ا دُ	+	\dagger	1	1	+	\dagger	\dagger		
	Consolidation	1	+	+	+	\dagger	+	\dagger	+	1	-	
		1	-	\dagger	+	+	+	+	+	+		1
	H.	Pressure		\dagger	\dagger	\dagger	+	+	+	+		
	1 1	18		\dagger	+	+	+	+	╁	+		
·	JCU Triba	c' (pst) 5' (dep)		+	\dagger	\dagger	+	+	+	\dagger		
	UCS / UU / CU Triaxia	. Se. 2. 6.	+	-	+	\dagger	+	-	+	╁		
	1 1	25.62	-	+	+	+	2	+	+	╁		
		Unit WC	\vdash	+	+	+	1286		╁	+		
		Chit Market		+	+	+	1080		+	-		
-			+	-	-	-	- -		+	-		
	Particle Size Analysis	Gravel Sand Silt Clay [%] (%) (%) (%)	_	<u> </u>		_	1	\perp	_	_		
	Parice	Send (%)	_	_	-	-	-	+	-	-		
ļ		S		-	-	+	+	-	\vdash	-		
	Limits	n uscs				\perp	$oxed{\bot}$	\perp				
	Atterneng Limits	11 (관 표		L	-	-	-	-	\vdash	_		
-		=			-	-	-	-	_			
	Seil Description											
	Soil Des									7.110.0		
										A CETANIA		
						weak at 86.0"				BORING TERMINATED AT 110.0"		
-	Noister	G			_	, co	19.1			SS		
16	Value Mais	£				-	- st	-				
- in	or special control	Type 1	CORE	CORE	CORE			CORE	CORE	-		
-	Elevation of Top Sa	· [208.0 C	401.0			358.0	391.0			
	5 7						7.2	1 1			4 19	
Samele	Conth	5q-11	_	50,5-55.0	95,0-100.0		98.5-57.2	100,0-105,0	105.0-170.0			
	Sam	DC-N	十	F3	22			25	19			
	Sorencie	Numbe	ë s	B-101	8-13:	25.9	101-5	8-105	9-103	9-10		

		Permeability	G., (pst)					2.8E-09 (h)							Ī	T	T	1	T			1				
			Type Oc. Cr.					+	1	+	+	+	1	+		+	+	+	+				 			Project CITY OF ARLINGTON LANDFILL Location: Atlington Tayas
	11	Confining		1	+		, in		+	-	-															Project: CITY OF ARLING: Location: Adjingon Tayas
	UCS/UU/CU Tribob	UCS-C, UU-E,		-		-	3527		-			_														
LTS	-	14/15					135,3																			
ST RESUI		Clay Unit wit (%) (pc)	-	_			116.6																			
ORY TES	3	(%) (%)					3.2 90.5			_	53,7 16.2	-	_	_		-	1					_	\perp			
BORAT		3 (£					5.3			-	92 E			-	+	\dashv	+	+	+	+	+	+	-	- -		
A AND LA	Afterberg Limits	L USCS	10 -0.38				-0.55 WH		1	-	_	_		-		-	1	-	-	1	-		7	_		
OIL DAT,	Afterbe	ŭ	25 15	+			51 32 29 4.65		+	+	+	-	+		-							1				
SUMMARY OF SOIL DATA AND LABORATORY TEST RESULTS	Sell Description	יים אים היים האים היים מניים ווהקשות ישורים מים ווים ביים יים ביים יים היים ווים ביים יים היים ווים ביים יים יים יים יים יים יים יים יים	Sandylam Clay John Sandylam Sandyla	יייין לייין (ברן) באַנואָ אוסנג	Who seessend ign done at 4 0.	rand (CL) similar maiss	and become	century asserts most	Vary dense, brown with accusional gray, fave, poody-graded SAND (SP), [ve.]	HARMAN AND AND AND AND AND AND AND AND AND A	fight stown, the mount of Mr. reco.			השת פווא ביון וא כנילא (כון) ששפי		Median Stady, unweathered, gray and dark cray. Shall F	al stamS of limeatone between 35.0° and 40.0°				with accessional scame of intestions between 50.0° and 55.0°			BORING TERMINATED AT 64.0		
	en c	2 1,30\$6, 750				Very sulff, to		Very stiff, re	Vary dense	1	Very dence, Egnt brown.		-	Hand, dark g	-	Median stu	with occasional seams of I				אולה מסכובוניים			SORING TER		
	SPT Name Incisture Sample (Blows) Content (750-75)	8 112	-	2.8.	17.3	16.0	19.6	-	_	59 79.8	LS Z	Sal	ES		-	_	_	-	_	_	_		L			
	Sample (b	83		z,	;E	F.	E.			£ 55	SS Refuszi	SS Retusal	SS Refura	-	SHOO	CORE		SPAC	core	CORE	_	CORE	CORE			fates
	Elevation of Top (ft)	6,77,		475,9	463.9	465.9	-64.9			457.3	452.9	447.9	5775		425.4	437.5 C		422.5 Or	427.9 CC	\$2.5 CO		47,5 CO	4/2.5 CO			Soci
	Cepth Interval (1-bgs)	0.0-1.5		3.0-4.0	4,0-6.0	9,6-8,0	3.0-10.0	·		15.0-16.0	20.0-21.5	25,0-26.5	30.0-31.5	 ·	31.5-35.0	35,0-40,0		-0.0-45.0	45.0-50,0	50.0-55.0			50,0-6-0			A Ssociates
	Sample Numbe			~1	"		٠,			60	7	E)	30		d.	11 35		12 -50	13	74 50,		\$5	75 50.0		1	
	Boreticle Number	E-152	다.	3,102	3-102	6-1CI	6.62	8-102	25.52	20:-2	3.102	3.102	2,102	è-:02	भार	B-162	3-102	B-102	B-: 02	271-2	8-162	8-162	ii	E::8		Mrs. Addes

	Dermashila	(cm/sec)		T	7	T	1	1	T																			
		0.00	1	+	_	\bot	+	-	+	_	L	_	_	_					 									FL
]	Cancolidation	ö	┼	\downarrow	_	_	\downarrow	\perp	1	_	L		L															Project CITY OF ARLINGTON LANDFILL
	Sala	ä	ļ				L	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$	L																	1		NGTON
		1ype																	1			1		7		\top	1	ARLII
	Confining	Pressure						T									\exists			1	+	\uparrow	1	1		\dagger	-	I V
	1 1	(Cep) .						T				7	7		1	7	\forall	\dashv	7	+	\dashv	\dagger	7	\dashv	\dashv	+	$\exists \parallel$	pject (
	UCS / UU / CU Triaxial	C (DSI) . (165)		_		T						1	7	\dashv	\dashv	+	+	\dagger	+	+	\dagger	\dagger	\dagger	-	+	+	$\dashv \sqcup$	ů.
	ncs/in	1 0 E					-			\dashv	\dashv	1	\dashv	+	-	-	+	ᆉ	+	+	+	+	+	\dashv		+	-	
		3.5	-					-	-	+	\dashv	\dashv	\dashv	\dashv	+	+	+	+	(4)	+	+	+	+	\dashv		- -	-	
	N Sign	ទីទូ	1	\dashv					\dashv	+	+	\dashv	\dashv	\dashv	\dashv	-	+		7 33.2	+	+	+	-		90		4	
ULTS	<u></u>		-	-	_		\dashv	\dashv		_	+	-		-	-	\downarrow	-		743.7	_	_	1	\downarrow		167.3	_	_	
RESI	6.5		4	_				_	_	1	\downarrow	1	_						1302						135.0			
TEST	X %	(%) (%)																					T			T		
TORY	Sand	(32)			1	7	1	7	\top	\top	†	\dagger	1	\dagger	-	\dagger	1	\dagger	\dagger	+	+	+	+	\dagger	+	+	1	
30RA	Say	Ē											1	T	1		1	-	1	\dagger	\dagger	t	T	T	\dagger	\dagger	1	
<u>\$</u>	g	necs	-	_	_	1	_												\top		T	T	T	+	- -	+	-	
TA A	Attendença Limits	ā	╁	+	-	+	-	-	+	+	+	- -	+		-	-	-	\perp	\perp	-	-	-	7	-	-	-	1	
IL DA	1 1	z, z,	-	-	-	_	7	1	1	1	1		1			1			1				\perp		1	\perp	_	
OF SC			Pohity	\dagger	+	+	+	+	+	+	\dagger	╁	+	+	+	╁	+	+-	+	+	+	+	+	╀	+	+	-	
SUMMARY OF SOIL DATA AND LABORATORY TEST RESULTS	Soil Description	न्द्र, redark and ight brown, tine, poorh-graced SAND भक्ता त्र	Compact, reducts and ight brown, fine, poorly-strated SAND (SP), eightly most			Very still to zard, gray with brown, last CL ay with conditions	former (i, n)	<i>1</i> 701		Cask gray, weak to medium strong, SHALE, signify weathered	interoceded with weathered sandstone between 15.0° and 40.0°						-5.0				Enestone seam at \$7.5°			strethedded with seams of limestone between 70,0 and 75.0		חופא אחווי מין 17.3		
	8 TG	l l	1		_	Very	_	2ray at 10.0°	<u> </u>	Carre	- Surarus		_	_	_	L	"D. 24 ze gnortz		L	_	Emeston	L		Enterbed		igh angl		
	Sample (clowar) Content Sample (clowar) Content Type 1th (5s)	42	<u>8</u>	13	-	-	-	_	_	_	-	L		_	_	_	_	10.4						6.3				
	ES SIEVE	27	;; (0	12	1;	-		-	-	E.	_	-0,	w	m	-6	w	-111	-	(1)	111								r res
	in or	7 55	8	28	28	-	3	-	£	CORE	_	CORE	CORE	CORE	CORE	CORE	CORE		CORE	CORE		CORE	CORE	SHCO	CORE			Đặ Ciệi
	Elevation of Tep (f)	455.7	453.7	481.7	475.7		477.7		472.7	470,7		465.7	+50.7	455.7	450,7	245.7	770.7		435.7	430.7		425,7	420.7	415.7	410,7			93
	Sample Depth (ft-bgs)	0.0-1.5	20-3.5	4,0-5.5	6.0-7.5	١,	6.01-0.0	.	13,0-15,0	15,0-20,0		20,0-25.0	25.6-30.0	30,0-35,0	35.0-40.0	40.5-45.0	45,0-50.0	48,1-48.5	50.0-55.0	55.0-50.0		90.0-65 tt	65.0-70.0	70,5-75.0	75.0-30.0	\ \		Associates
	Numb		2	in	7		111		භ	7		10	Gr	ţ2	\$	12	55	-	44.5	55		16	17	16 7	12 51		1	
	9.1	8-103	818	8-103	9-103	5-103	8-163	B-103	5-163	348	B-103	B.103	2,102	6-103	3-103	8-103	6-103	5163	3-103	B-103	8:133	8-100	5-103	3-103	31.8	8-103		

	Ang. co	
	Permeability (cirfsec)	
	(Jeg) , , , , , , , , , , , , , , , , , , ,	
	Correction	Project CITY OF ARLINGTON LANDELY
		INGTON
	Confarg (53) Type	OF ARI
		A CITY
	CO OU COL Tributa Dil. C (500) \$ (1009)	Proje
	70 G G G G G G G G G G G G G G G G G G G	
	UCS-C, UU-r, (Keh)	
ည	15 Mag	
RESUL.	(Ca) (Ca) (Ca) (Ca) (Ca) (Ca) (Ca) (Ca)	
TEST	SEC AND (15) (2) (2) (2) (3) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	
TORY	Cavel Size Analysis (%) (%) (%) (%) (%) (%)	
BORA	a Bosto	
AND L	1 USGS	
DATA.	Attractor Limits	
SUMMARY OF SOIL DATA AND LABORATORY TEST RESULTS	E	
ARY O		
ZWI		
S)		
S)	Assembles	
Ø.	Assembles	
Ø	Assembles	
8	Sci Description 197 angle chance at 83 S ORIVG TERRITORNTEE AT 192.9	
S	Sed Description ones. This arge Chance at 83.5. Borbing TERMILWITEE AT 192.5	
8	Ser Nature Resemble Sed Description 1 th of high mape fraction at 83.5. Borbus Teshulovitee AT 102.9	fes
8	Ser Melaure Ser Consult Melaure Ser Consult Melaure Ser Consult Melaure	lder Ociates
8	Buyaten Sarma Market M	Golder Associates
8	New July	Golder
8	Buyaten Sarma Market M	Golder

Coccosicion Permeability C.c.	Project CITY OF ARLINGTON LANDFILL Location: Adington, Texas
Corcosidation C.	NGTON LANDFILL
	NGTON LA
	B S S
	ARLI ARLI
Confining Pressure 1939 1939 722: 722: 722: 722: 722: 722: 722: 722	Project: CITY OF ARLING
170 28 17	roject: (
1 1 5~1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
13.23 (Sept. 17.23	
ULTS W United W Unite	
SUMMARY OF SOIL DATA AND LABORATORY TEST RESULTS Abrerg Links Abrerg L	
ATORY TEST Paricle Sco. Analysis 1 (St) (Pt) (Tt) 1 (10 820 11.0 82.0 1	
00RATORY (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	
D LABO	
DATA AND 1	-
0 DE DA	
S	
IMARY IMARY	
Sed Descripson If the lowery staff, brawn, 24 CLAY (G19) And 21 & G. Sed to firm, brown, east QLAY (G1), wet from to staff at 22 & G. Sed to firm, brown, sandy lean CLAY (G1), wet frow derre at 43 & G. Have, brown, Easter (SAND (GC), wet frow derre at 43 & G. Median strong, dark gray, fat CLAY (G2), graday Median strong, dark gray, (G3), graday G30, G10, G10, G10, G10, G10, G10, G10, G1	
Sol Described in CLAY (C1) NO.LAY (C2) NO.LAY (C2) NO.LAY (C3) NO.LAY (C3) NO.LAY (C4)	
Firt. to very still, brave. Firt. to very still, brave. Set to fire. troon, carper \$5.60 of to fire. troon, carper \$5.60 of to fire. brown, sarey of care at 43.5 of the \$5.90 of to fire. brown, sarey of care at 43.5 of the \$5.90 of to fire. brown, sarey of care at 43.5 of the \$5.90 of to fire. brown, sarey of care at 43.5 of the \$5.00	
Sal D. final fam to usy stat, known, st. CLAV(C) fam to usy stat, known, st. CLAV(C) Sal be fam to stat at 25. had stat 25. Salt to fam to stat at 25. Salt to fam, chart Salv (SC), we fam to stat at 25. Salt to fam, chart Salv (SC), we fam to stat at 25. Salt to fam, brown, stroy lean CLAV (C2), and fam to stat at 25. New, dark gray, fam CLAV (C3), and fam to stat at 25. New, dark gray, fam CLAV (C3), and fam to stat at 25. Salt to to stat	
25.9 24.0 115.9 25.9 25.9 25.9 25.9 25.9 25.9 25.9 2	
12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	S
	Giat
## ## ## ## ## ## ## ## ## ## ## ## ##	Golder
Sample Cample Capple	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Number N	

	Permeabilly (cm/sec)		
	Contolication Contolication Person	(1881) 20 20 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Project: CITY OF ARLINGTON LANDFILL
SUMMARY OF SOIL DATA AND LABORATORY TEST RESULTS	1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1		
SUMMARY OF SOIL DATA	Sed Description Sering B-10c was corrected this permented		
	SPT R Value Moissure Sample (blows) Content Type 1 fg (%)		"Golder Associates

SUMMARY OF SOIL DATA AND LABORATORY TEST RESULTS		Soil Description Soil Description Address Limits (3) Model (3) Communications (3) Model (3) Communications	PL P II USCS (N) (N) (N) (N) (N) (pd) (can hear hear hear hear hear hear hear hear		54 238 Hazi gatekmur terti sv. zvan	30 19.8	~				Median strategy grap, Sin grained. Stylinstream of early Eric.		13.0 Elith transmission of the contract of the	200		Media store, built and recovery	The section of the se	Q14 525 24 25 C			2) SE II WAS ENCICENTIAL				(Transcons sam a St.)					Project CITY OF ARLINGTON LANDFILL Location: Affinition Tanger.
		9 7=	7										Michigan beautiest und in			Medium spore, Bush now		3ark gray 2: 42.0°			mestone seam at 54.0°				nestone seam 45 55.0					
	10 × 10	wes/ Coner,	26.7	1 .	+-		1	-	-	1	-	-			-						110				5					
	il z	Semple (blo	Ę	SS	53	SS			CORE	COSE	-	CORE	OCR R	+	CORE	-	CORE		CORE	CORE		CORE	CORE	CORE		32	Œ		į.	ates
	Đevation	: 1	473.9	677.9	475.8	473.9	471.9	569.5	65.5	455.9		454.9	1	\vdash	44.9	_	439,9 C(00 6:23	429.9 CC		424.9 CO	415.9 CO	c14,3 CO		405.3 CORE	404.9 CORE		٩	SOCI
			0.0.20	20-35	4,0-5,5	6.0.7.5	8.0.9.5	10.0-15.0	15.0-20.0	20.0-25.0	-	25,6-30.0	1	-	35,5-40.0	<u> </u>	40.0-45.0	 .	25.0-50.0 4	50.0-55.0		55.0-60.0	50,5-65,0	85,0-70.0 cq	_	70.0-75.0			Colder Colder	AS
	ß –	Number		24	m	4	10	10	7	3 20		6 12	10 33	_	1,8		12 40.0		13 25.0	14 50.0	-	15 55.0	35.0	4) a 5, p	-	16 70.0-	15 75.0-60.0	1,64	THE STATE OF THE PARTY OF THE P	7
1			F-105	5-103	B-135	3-105	B-10£	5-136	\$01.4g	3-105	3-105	B-168	B-105	B-105	5-105	6-135									-	-	-			1

		Permeability (cm/sec)							
		F 6			+				
	Ę	Cr. d. fach	H	+	-				
	Consolidation	8	1		-				
		Type		\dashv	-				Project CTO VET CALL
	· -	Pressure (pst)		+	-			ĺ	0 10
	ā	(Ba)	\dashv	+	+				
	CO Triti	Dar)	+	+	+			L	B. in
	UCS/UU/CU Triaxial	(ksf) (psf) c'(psf) e'(ceg)	\dashv	-	-				
	-	3,8	+	+	+				
	.5	Dulwi (pd)	+	+	++				
ST	3		+	-	+				
7 RESI	्र स्रो	(bed)	+	-	$\perp \downarrow$				
7 TEST	Pande Size Analysis	(E)							
TORY	Pandes	3							
BOR		£ 1	_	L					
AND L	a) in it.	n uscs	-	$\left - \right $					
ત્વે	0.1	_	_						
JAT	terben	# E	+	-					
SOIL DAT	Atterberg Limits	E :							
RY OF SOIL DAT	Átterber	ić							
JIMMARY OF SOIL DAT	Aterber	ić							
SUMMARY OF SOIL DATA AND LABORATORY TEST RESULTS	richer Atterber	ić							
SUMMARY OF SOIL DAT	Autorien Autorien	u 'n			10.				
SUMMARY OF SOIL DAT	Sol Desorption	u 'n			NED AT 94.0"				
SUMMARY OF SOIL DAT	Sod Description Address	u 'n		ATO WITH THE PROPERTY OF THE P	FIRMINATED AT 94.0°				
SUMMARY OF SOIL DAT	Sed Description	if zne between \$0.0 and 85.0		PODINE YEAR	EUKNIG JERNIKATED AT 34,0'				
SUMMARY OF SOIL DAT	Sed Description	if zne between \$0.0 and 85.0		P O B'ME TEO.	EUKNG JERKKATEO AT 94.0				
SUMMARY OF SOIL DAT	Sed Description	if zne between \$0.0 and 85.0	III.		EUKWA TERAKATED AT 31,0				4
SUMMARY OF SOIL DAT	SPT	CORE Lash tance between 80,0° and 85,0°	CORE.	- Awar	COUNTY TRANSMED AT 94 G				ider Gjoras
SUMMARY OF SOIL DAT	SPT SPT White Indepute Sed Description (1) 1/20 (14) 1/40 (14) (14	395.5 CORE	334.5	ave.	CONNUT IRRUNATED AT 94,00				Golder
SUMMARY OF SOIL DAT	357 N N Nature Indeparts Scot Description 19 179 159 159 159 159 159 159 159 159 159 15	395.5 CORE	334.5	ave.	EUNANG JERNONZED AT 34,0				Golder A scoriotas
SUMMARY OF SOIL DAT	SPT SPT White Indepute Sed Description (1) 1/20 (14) 1/40 (14) (14	DOD = 55.0 395.9 CORE		- CARE	EUNERO JERNINATED AT 34,0				Golder

SUMMARY OF SOIL DATA AND LABORATORY TEST RESULTS.		Targe Limits Particle Star Armshysis UCS / UL/ CU Transier Corresolation Corresolation Corresolation	- 1				24 24 10331 MH 0.C 34.5 66.4		1	33 72 0.627				115.7 123.9 9.7E.08 (v)											Project CITY OF ARLINGTON LANDFILL Location: Adington, Texas
		Soi Description	SER, Brown, Earloy lean CLAY (GL), most		with occusional dork brown, ight brown, and regulat brown at 2 or	Soft, fight Stown and reducth brown, sandy classic SILT (MA) and contact the second se	4	Here, dock gray, chade SLT (AAR), alaby, with coccasional light brown sand		Stans, gray, SANDSTDNE, LIMEBÜRLED		THE STATE OF THE S		Medium strong, gray, sandy, SHALE, unweathered				stams of Unestone between 42.5° and 45.0°		מכופה מים אוני של היו של ליוו מאושה של ליווים אוני אוני אוני אוני אוני אוני אוני אוני			EORING TEARING JED AT 57.0°		
		Value Mosturo	17.5			28.0	21,5	19.7	15.3				15.7		\vdash	-		a	-	_ <u>a</u>			×		
	Hadis :	Value Ciclows/	ţ	_			_	н	Refusat			100													tes
		P Sample	28	F		£		. 83	8	-	CORE	CORE		CORE	CCRE	CORE	CORE		CORE	_	1 1	CORE			Zera
		at Tep		466.2		463.7	461.7	450,7	43B.7	452.7	451.2	447.7		412.7	437.7	432.7	427.7		422.7		2117	412.7		, mark	GO
	Sample	Depth Interval (R-bgs)	6,5-1,5	1.54.0		4,0-6,0	5,0-7,0	70-8.5	5.01-10.5	15,0-16,5	15.5-20,0	20.5-25.0	2,4	25.0-30,0	30.0-35.0	35.0-45.0	40,0-45,0	,	45.0-50.0		\$6.6-35.0	55.0-57.0			Associates
	ŝ	Sample	,.	2		173	٠,	••	40	7	63	ıņ		<u>5</u>	#	4	57		7	-		81	\exists		
	- 1	Barenole Number																							3

				,		SUMMARY OF SOIL DATA AND LABORATORY TEST RESULTS		
-	Sample	l b	-	g; Z	b .	Paridie Sze krower		
Baranole Sar Number Nu	Sample Interval Number (II-bgs)	h Bevation of Tap s) (f)	Sar Ser	np/e (bloy	Sample (albust Content Type 11) (%)	Soil Description Advitory Links Carel Sand Sit Chay Unitw UCS.c., UU.c.	Confining Consolidation	Permeability.
9-107	1 0.0-1.5	5 472.5		SS 23		Dimpart, redefin brown and signs brown, possely grated SLAND with CLAY The Children is the contract of the contract of the children is the children in the ch	[pst] Type Cc, Cr, d', (pst)	(S)
6-137	2 20-3,5	.5 471.0		SS Retusai	5.6 iest			
5:3	3 4.0-5.5	.5 469.0		SS Refusal	15.31			
8-107	4 8.0-7.5	.5 457.0		8	13.0	43 24 39 658 00 00 62		
701-6	5 8.0-9.5	.5 465,0	-	SS Refusal	72	3		
3-107	6 15,0-16.5	6.5 458.0		SS Refura	1	Had, dek gry, amay at C.AY (CR), shaley		
9-107	,				-	Sterg, tak gra, takadaret, SkilE		
3-107	7 (7.5-25.0	5,0 455.5	-	CORE	_			T
3-10?	8 25.0-25.0	5.0 446.0	1	CORE	10.1	1 Neutra Serra, drik gray, highty west there of SLINSTONE		T
751.5	•							7
D-107	9 35,6-0.0	0.0 <33.0	0 CORE	Ή		West, gray, smeathered, BHALE		T
5-107	10 40.0-5.0	5.0 433.0	CORE	in or				 T
6-107	1; 45,0-55,0	5.0 428.0	CORE	ill.		modun stong at 45.0"		T
5-107	,					Mobium story, pray, unwashered, EHALE		T
8-107	12 55.0-65.0	5.0 418.0	CORE	RE				T
3.107	13 55,0-75.0	3.0 40S.C	CORE	끐	7.2	Strong, GH 979, unwestinged, UNESTONE, with consistent seams of		T
3.107		-						T
1 201-8	14 75.0-80.0	396,0	CCRE	35				T
1-101-6	15 80,0-86.0	393.0	CORE	3E				T
9-107						SORUKG TERMANATEC AT 85.0"		 T
							-	
	N.							T
	Ŋ	Colder Associates	old Oct	ate	ζA	u. 3	Project CITY OF ARLINGTON LANDFILL.	

, , , , , , , , , , , , , , , , , , ,	Sample S	Associates
Sample Copy	1 1 1 1 1 1 1 1 1 1	Soci
200 00 00 00 00 00 00 00 00 00 00 00 00	20 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ASS
	Sample Led 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D
Buttennik Stam Number N		

	confraig Corrotation ressure Corrotation (53)		Project: CITY OF ARLINGTON LANDFILL Location: Adington, Texas
SUMMARY OF SOIL DATA AND LABORATORY TEST RESULTS	Attending Limits Particle Size Arabysis Dy Akdir Limits UCS/UUI/OUThassist LL PL P I USCS (R) (R) (R) (R) (R) (R) (R) (RD) (RD) (RD) (RD) (RD) (RD) (RD) (RD) (RD)		
SUMMARY	Sel Destrpion	SORAC TERMINATED AT \$1.0	
	Copn Service SPT N		Associates

TORY TEST RESULTS	Sept Sin Cap Div Wider UCS / UU / CU Triesdal Controlling	(100.4 122.5 2.7E-cus (ty)			Project CITY OF ARLINGTON LANDFILE
SUMMARY OF SOIL DATA AND LABORATORY TEST RESULTS	Atender Limits Atender Limits Atender Limits (44)	6 8			
SUMMARY OF S	Soil Description. Very self, trown, 1st C.AV wen used (Oh), algeby most tas shot in 0.5. For store at 1.2.	first, tectich brom, 1900 yh (CAN (CR), analoy Reckish brom, 181751CNE, Njaby wazhenes	lection stoop, bie 30%, Stall, umeadused, win seams of commissed save al 25.0°. (Regulation branch become al 1,0° and 42.0°.	intercore seam al 45 0° was a 65 0° which dige (realing al 75 0° SORING TERMINATED AT 50.0	
	SPT NN	22.4 Refusal 15.6			Golder
	1 15. 3 1 1 1 1 1	13 SH 13 SP 13 CORE 13 CORE	3 CORE 2	404.3 CORE 404.3 CORE 399.3 CORE 389.5 CORE	Mader
		.0 458.3 .0 458.3 .0 444.3	6 439.3 6 424.3 0 424.3 0 424.3	 	GC
	Sample Deph 24 (11-62) 00-15 0	8,0-8,0 8,0-19,0 - 13,5-15,0 15,0-20,0 20,0-25,0	25.0-30.0 30.0-35.0 40.0-45.0 45.0-50.0	\$0.0-55.0 \$5.0-90.0 \$0.0-65.0 \$5.0-70.0 75.0-60.0	
	Samp Numb	4 2 2 2	p 6 % 8 B	5 2 2 5 1 5 5	
	Borehote Number a-ros 3-403 9-103 E-105	8-109 8-109 8-109 8-109 8-109	3-1-06 8-1-06 8-1-05 8-1-05 8-1-05 8-1-05	8-105 8-109 8-109 8-105 8-105	

Sample Depth Office Sample Office Sample Office Sample Office Sample Office Sample Office Sample Office	SUMMARY OF SOIL DATA AND LABORATORY TEST RESULTS		Set Description Attendeng Umits Particle Size Analysis UCS / UU / CU Triaxia	L PL PL PL 10 105CS (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	16 9.8 (4mg)	-	21 10.5	Ortset, teddish brown, strain as courses above Cauth	25 19.4 Very sitt, dark grzy, hat CLAY (CH), shakey, with extendent stand partiess	Refusal 11.5 Hara, Spra gray, Jean Co.	Steps, Johnston Branc, StatUS/STONE	Refusal	Heat, duit gry, is CLAY with book CFN, grader, mate	Relusa 17.9		With to median stands, cark and a service an		7			Ment au 45 Gr	אַניעק: עני נוּמָא מַאילוַ בַּ רַשאוּמוּאַהפּוּכּ		The belong a sea of £0,07		Description at the set of the set	Graction seam at 63 C		Project CITY OF ARTINGTAN I AND FILE	
Sample Depth Order Content			stern stern				-	Dense, recomb brown, 40	Very slift, clark grzy, fat	Hard, Yest gray, Yean Ci.	Strong, yellowish brown, S		Hard, dark gray, Salcury	1		Weak to median strong, c					אַנייט או אַניט.	Strong, dark gray, SHALE,		Imestant seam at 60.0"		Smestone seam at 55.0"	Emestone seam at 68.C'		 	
Sample Depth Depth		SpT	Value Mois blows// Cont	7 4	-	-	-		-		-	sfusal	_		fusai	-	-	Į į	-	_		_						_	v A	
Sample Depth Depth			Sample	SS			8		8				_			CORE	3.CCC		CORE	CORE	CORE	CORE	CORE	CORE	CORE		-	CORE	der	
10 10 10 10 10 10 10 10 10 10 10 10 10 1			Bevation of Tep	433.0	-		479.0		477.0	475.0				25.55	I.	1	1		7						- 1		- 1		Gold	
10 10 10 10 10 10 10 10 10 10 10 10 10 1		mple	Depth Interval (fl-ogs)	0.0-1.5	20-3.5		4.0-5.5		5.0-7.5	3.0-9,5		13.5-15.0	,	18.5-20.0	23.5-25.0	25.0-20.0	0,0-35.0	11.3-31.9	5.0-40.9	0.0-45.0	5.0-50.0	0.0-55.0	5.0-60,0			+				
		S	Semple Number	-	2		3		-,	2																-				
			Sorehole Numaer		9-110	φ 0:1:0	6-110	9-11B	B-:76	8-170	9119	6:10	9-110	9-110	9-116	3-1-E	5116	0.44	6-110	m-4:0	3-170	52	B-:10	B-110	22.	0	arra -	5-110		

 	Permeability									2.1E-05 (tr)	T]	T
	Perm	j G	\dashv				-		\dashv	2.16	-		
	5	Cr a's (pst)	\dashv	_			-	\dashv	-	+	+		
	Cansolidation	3	\dashv	\dashv	-	_	\dashv	-	\dashv	+	+		
	l	1,ypa	+	\dashv	-	+	\dashv	\dashv	+	+	+	-	
	Confining		\dashv	-	-	+	+	+	+	+	+	-	
	. 1 4	(Eug		\dashv	+	1	\dashv	+	+	+	+		
	OUT Table	c' (pst) ¢' (deg)	\dashv	\dashv	\dashv	\dashv	+	+	+		╁	-	L
	UCS/UU/CU Triaxial) (gg	+	+	\dagger	+	+	+	+	+	╁		
	28-c.	(lest) (bst)	+	+	+	+	+	+	+	+	+		
ŀ	Moist Unit wit	<u>g</u>	\dagger	+	+	+	\dagger	+	- ;	<u> </u>	+		
ł	Cot w		\dagger	+	+	+	+	+	1380		+		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E	+	+	+	\dagger	\dagger	1	+	+	+-		
	Grayel Sand Sill Clay	£ .	+	+	+	+	-	+	+	+	-	·	
1	Paved Se	<u> </u>	+	+	+	+	+	\dagger	+	+	+		
		3									1		
	Attendeng Limits	2 E	-	+	+	+	+	+	-	+	\vdash		
	Attent	2	-	-		-	-	-	-	-	-		
		T	T		T			1	1	Τ	T	,	
							d \$5,0°						
	ģ						on 92.7.24				ar PZ-116.		
	Sel Description						arres beam			9	то ріедопе		
	Ø		75.5				C) atyles (TED AT §	onvened in		
			Interiore seam at 75.5"				D. 55 and T. S. and seturated sequential and 55.00	195.6"		BORUNG TERMANATED AT 57.0"	Bothg 8-110 was converted into piezometer PZ-116.		
-	85	_	fmesta	_			WEZK	xt eng at 95.6°	_	BORIN	Baring		
-	Je Moiss Not Conte	ļ		ļ	-	-		-	16.2	ļ	_		
SS :	Sample (blows) Content Type (18) (34)	CORE		CORE	CORE	CORE		CORE	_				
-	Elevation of Top (f) To	208.0 CC		403.0 CC	358.0 GC	393,0 CC		258.0 CC					
					20.07								
Sample	Depth pte interval ber (ft-bgs)	75.0-80.0		30.0-85.0	85.0-90.0	90.0-55.0		85 0-97.0	53.3				°e,
	or Number	g 9	٠	. 30 	5	27		 23		- 0	_		
	Borebele Number	ii 51.5	-311-B	5:13C	8.310	8-55	9-115	6-110	3-110	8-110	8:119		

		(cm/sec)	T		2.75.00.00	(w) (w)	T	T	T		T			5.2E-10 (h)	6.3E-10 (v)			2.2E-08 (h)		3.4E-03 (v)						Γ			
			0,(05()	\dagger	+	1	\dagger	+	\dagger	+	1	\vdash	+	5.5	19	-	-	2	_	3.4						-			
	Censellanon	2	1	1		T	T	T	T				T	T	\vdash												-	ANDFIL	
	Cente	ė	Ī									-										-			_		\dashv	GTONL	w ₁
		, in	1																			\exists					\dashv	ARLIN	оп, Теха
		Pressure		-		L																	1					CITY OI	. Arlingt
	J Trizodal CU	c (bst) 4, (deg)	_	L	L																			1		1		Project: CITY OF ARLINGTON LANDFILL	Location: Arlington, Texas
	UCS/UU/CU Trizoini		_	-		_																							
	1. 1	C (tsa)	_								_	_		_	_	_	_												
		wt UCS-c.			-		_	4		_	-	4		_	_	1	_	1	1	_	_		1	_					
ULTS		(act)	-		.1 121.1	_	_	-	_	-		4	-	158.4	_	1	-	132.5	-	141.2		1		1					
T RES	h	(%)	-		101.1	-	_	-		4	_	\downarrow	_	157.9	\downarrow	1	_	287		138.8				_					
ZY TES	8 8	38	_		81.8	_	83	1	1	_																			
RATO(Partici	(%)	+	-+	2.81		0.5 36.2	-	+	-	+	+	-	4	+	-	_		- -	_	_		_						ľ
LABC		CSCS	\dagger		ಕ	+	+	\dagger	+	+	+	+	+	+	+	+	+	+	-	+	-	-	+	+	+	-	_		ı
ra and	L L	ii	7		200 200 200 200 200 200 200 200 200 200	7	1	1	1	+	1	1	+	+	1	+	1	1	1	_	-	1	1		\perp	1			
OIL DA:	1 1	<i>it.</i> ∃	+		21	+	+	1	#	1	‡	+-	#	_	\downarrow	\downarrow	1	1	\pm		1	_		-	-	_			
?Y OF S(-	\dagger				1	\dagger	+	\int	+	\dagger	+	1	\dagger	-	-	+	\dagger	-	+	+	_	-	_	-	-		
SUMMARY OF SOIL DATA AND LABORATORY TEST RESULTS												heced																	
	Scil Description	(SC). dry	L). mode			CL), make			SP), we:		model	Strong, Eginl gray, line, DANOSTONE, highly weathered									SHALE, UNWERTHERE		377						
	Sei De	oyey SAND	ט) אנונג עוןייי			ean CLAY (ded SAND ((CH), shaly,	NOSTONE				that's		ONE			SHALE, U		aum crystak						
		th brown, ch	Karl CLAY			we, sandy		1 NE 8.0	. paony-gra		r. Ist CLAY	ray, finc, 0,4				CLAY (CH)		17, SILTST			Stary, sand		elle and gyp	25772					
		Compact. Both brown, cayey SAND (SC), dry	Self, brown, Hart CLAY with start (CL), mode			Furn, fight brown, sandy lean CLAY (CL), male		recess brown at 8,0	Loace, brown, psorty-graded SAND (SP), wet		Very stiff, gray, let CLAY (CHJ., straly, most	rong, light g				Hand, gray, fal CLAY (CH),		Svans, light gray, Siltstone			Medem drang, gray, sandy		pastible sea thelfs and gyosum crystals at 42,0°	imesicie seam zi 45.5			_		
	Moisture Content (%)	5.5		15.8	21.3	19.0		- <u>š</u> -	-2-	1,1	>	S.	5.3	<u> </u>		玉	11.8	8	1.7	-	2		8	, g					
	Semplo (Diswell 1977)	4:	L			19)	9			16		Redusa								-								Sə	
-	Sem S			FS.	£.	SS	8			8	-	SS	ļ_		CORE			CORE		CORE		CORE	CORE		CORE	CORE		ider Ciat	
	Elevation of Top (ff)	464.5		462.5	480.5	458.5	457.0			449.5		2.63.5			443.0			441.5		436.5		427.5	421,5		475.5	405,5		Golder Associates	
	Depth ite interval	0.0-1.5		2.0-4.0	4.0-6.0	6.0-7.5	7.5-3.0	,	\cdot	15,0-13,0	,	18.6-15.5	19.0-		15.5-25.0	-	21.0-	23.0-26.0	25.2-	28.0-37.0		37.0-43.9	+5.0-48.9		48.C-58.0	58.0-68.0			
	Sam	,-		7	-	-	٠,			60		<u>۲</u>			80			6		10		1,2	55 35		5	74 58	'		
- 1	Borencie Number	3111	5113	6:33	11.1	6.533	B433	3.11.5	9-13:	111.5	B-11.1	9-111	Berge		B-111	B.: 11	9-11:	0-111	9-1-1	5.11.5	rates.	5-77.5	3711	F113	Bern Bern	B-22.5			

SUMMARY OF SOIL DATA AND LABORATORY TEST RESULTS Afferter Limits Columbia Columbia	Project CITY OF ARLINGTON I ANDELL	Location: Adington, Texas
SO I D I D I D I D I D I D I D I D I D I		
Sumple S	Golder Associates	

		'emeablish	(cm/sec)	T	1 KE OB AN	(u) populari										Ī	1.7E-07 (v)	Ī												1	
			9		\dagger	\dagger	7	7		800	_		-	\vdash	\vdash	-	-	\vdash					-	\dashv	-	-	\dashv				
		ngou	ď	1	\dagger	\dagger	\dagger	7	-	0,02					-	-	 					-	-	\dashv	-			-			NDFILI
		Cansolidation	8		\dagger	T	\dagger	\dagger	-	0,13										\dashv	-		\dashv	\dashv	-	-	\dashv	\dashv	-		TONE
			Type		╁	\dagger	+	\dagger	-	2	-						-			-	1	\dashv	\dashv	\dashv		\dashv	-	-			ARLING
	-	Suffining	Pressure (pst)	1	\vdash	\dagger	\dagger	+	\dagger	+	-						-		-		\dashv	\dashv	\dashv	\dashv	\dashv	1	-	-	-		Project CITY OF ARLINGTON LANDFILL
		1	180	-		1	\dagger		\dagger	1	+	1		\dashv		-		\dashv	1	+	\dashv	\dashv	+	-	\dashv	+	\dashv	-	\dashv		yject Cl
	100 100 100	3 3	در (Dag) . ((qub) ي			\vdash	\dagger	-	\dagger	1	7	1		7	7	\neg	\dashv	-	1	1	\dashv	\dashv	+	\dashv	+	\dashv	+	+	-	L_	a c
	1 431		(184)				\mid	\dagger	\dagger	1	1	1	7					7	+	\dashv	+	\dagger	+	+	+	+		+	\dashv		
		4	38				T	\dagger	\dagger	†	\dagger	1	1	\dashv	+			+	\dashv	\dagger	+	+	123.6	+	╁	+	-	+	\dashv		
)	ľ	Moisi	E E		119,4		T	\dagger	110.4	1	\uparrow	1	+	7	+	7	135.3	+	\dagger	\dagger	\dagger	-	7.69.7	+	1	\dagger	+	+	-		*
	r	- S	-	1	97.B		-	1	802	+-	\dagger	+	+	1	+	+	119,4	+	+	十	+		141.6	+	-	- -	+	+	-		
	sizyze		8	1		72		\dagger	T	\dagger	\dagger	\dagger	\dagger	+	+		+	+	+	+	+	+	+	+	+	+	+	-	\dashv		
	Particle Size Analysis	pue	33	+	+	25.6		\vdash	\vdash	+	+	+	+	-	+	+	+	+	-	-	+	+	+	+	+	+	+	+	-		
0.000	ď.	Gravel	£	1		22		-	-	f	\dagger	\dagger	+	\dagger	\dagger	+	+	1	-	╁	╁	╁	+	+	-	+	+	╬	-		
			nacs			d G												1		\dagger	1	1	T	\dagger	-	-	+	-	1		
		The late	χ.	1		28 0.15			35 0.01	-	22 -2.62		+	+	+	-	+	-	+	+		-	-	-	-	-	-	\perp	1		
			1	+		45	-		58 22		52 23	-		-	7	-	-	-	1	1	1	-	1	-	‡		1				
						1							1	1	T	\vdash	-	T	\dagger	\dagger	\dagger	+	\parallel	\dagger	\dagger	-	\dagger	-			
									h), mest	P). wet	ey motes				-					-								1128.			
		Soil Description	1.), most					1	Readish אהם כגוע לואר לאם כנות לורים המינה התה (Ch), most	Brown, medium to fine, poeth-graded SAND (SP), wet	Hard, 573v. sency, elastic SILT (U20), snuty, séghty moka			to 33.5°			,				Pd 50.0							Soring 5-1128 was cenverses into pieromater PZ-1128.			
		Soil D	Stiff, brown, keen Q.A.Y with sand (CL), moist					1.6.0	מו כראי	ಎಲ್ಫಾಗ್ಗೆಂ	SILT (MA)	¥		interbeduced with shale between 20.0" to 30.9"			Sales Charles				with Amerione seams between 45,0' and 60,0'						7.75.0"	en pro piez			
			ean CLAY				0.0	ark brown.	SIK Drown	n to fine, p	nGy, elastic	SETSTO		th shale be			ncy SHAL		at 40.0		Fearnts Deh		2: 55.0				NATEDA	AGE CONNEC			
			it, brown,				Soft to live at 5.0	feotish and cark brown at 6.0	and deliber	own, mecin	ifd, Stay, 32	Strong, brown, Sill TSTONE		arbedged w			West, gray, gangy SHALE		medium strong at 40.07		Imessone	Hong at 55.0"	mechum strong at 55.0°				BORING TERMINATED AT	15 B-112R			
r		Content (%)	, a	122	25.4	-!	-		22.5	ěī.	15.3 Ha	B	-	ž.	-	13.3		\vdash	ě	ļ	To a	5.7 1200	H	-		<u> .</u>	108	Borin	$\left \cdot \right $		
Spr	z	Sample (blows/ Content Type 11) (%)	5	<u> </u>		\dagger	\top	1	1	1	3/2	Refussi	-		-	-	+	┢	-		-	-	-	-	_	_		-			S.
		Sample	23	뀲	ξ			; ;	r,		8	Ş	SORE	CORE	CORE		CORE	CORE	CORE	CORE		CORE	COPE	CORE	CORE	CORE		-			der
	Fleuation	of Top (ff)	460.0	458.0	456.0		15.0	2 2	436.0		445.0	442.0	440,5	0.02	4320		2,052	425.C	420.0	415.0		410.0	405.0	400.0	355.0	350.0					SSO
ä	9	Interval (fi-bgs)	3.0-1.5	2,6-4.0	4,0-6.0	1.	0 8 6 4	30-300			15.0-16.5	18,0-19,5	15.5-20.0	20,0-25,0	25,0-30.0	25.5	30.0-35.0	35.0-43.0	40.0-45.0	45,0-50.0	-	50,0-55.0	55,0-60,0	60,25-6.08	65,0-70,0	70,0-75,0	_				Associates
Sample	F	Sample Number (,-	7	63	-	- "	- -	- -	-		7 2	(2) 21	5 20,	:0 25,	<u> </u>	11	12 35	15 -40.1	14 25.0		15 50,0	15 55.0	17 60.0	1E 55.0	19 70.0					
	-	Number W	Brize	8-1-2£	67128	6-1128	8-1128	\$21.2	1000	+	8-172R	B-1125	3-112R	3-1128	9-112R	S-112R	9 R179	B-1128	B-1128	B-12R	B-112R	3.1128	E-1128 1	3-112A	3-112A 1	E-fizh	3-112R	9-112R			
Т.	_	n Z	123	in		(5	1 0	T.,	L	Τ,	10	rż	/ñ	ιń	ų	ė,	, a	ė	A.	r)	ιδ	oi.	ű	2	ň	Ĭ.	19	3)			

SUMMARY OF SOIL DATA AND LABORATORY TEST RESULTS		cicle Size Avalytic UCS/ UU/CU Travial Dy Mari Cii Consolidation	Pressure franching			0.3 22.5 73.8							nn 32 5:18											Project CITY OF ARLINGTON LANDFILL
SOIL DATA AND LABO		Atterberg Limits	ור אר א ח מככא ט			58 31 Z7 -0.43 MH 0				+						1	+							- - - -
		Sol Description	Park brown, caves SAND (RE) moder	Dense, redeck trown and date brawn, medium, Doorly-or seed 5.100	13.4° (1.4.7)	trans, dest brown, where SELT with same (MN), thesew with recommons to the	פנסיים בחום בחות ביות ביות ביות ביות ביות ביות ביות בי	Weak, flux gray, sancy SHALE, moderately weather and		Metum strong, gray, SILTSTONE	Pown at 11.5"		Weelum arong, gray, SHALE, unweathered				Intelore seam at 12.5		imprione neums between 15.0° and 40.0°		Americane seums detween at 44,5° and 47,5°		BOPING TERUNATED AT 17 JF	
	}-	Sample blows/ Conent Type 14) (%)	27.0 2		19.4		14.5	16.8	6.5	-	1	10.4	**************************************				5		Ę		ij		80	
	S,	Val Jample (bies Type 1 ft	r _o	-	\$\$	-	SS Refusal	SS Refusal	CORE	CORE	-	ccae		CORE	=೫೦೦	CORE	-	CORE		CORE	-	CORE		Golder
	*******	Elevation of Top S	459.7		455.2		456.7	454.7	453.2 C	449.7 C		24.7 C		439.7 CC	434.7 C:	-29.7 CC		424.7 CC		419.7 CC		414.7 000		Solde Soci
	ple	Depth interva) (ft-5gs)	0.0-1.5	-	: 5-3.0	,	3,0-5.0	5,0-6,5	6.5-10,0	10.0-15.0		15.0-20.0	-	20.6-25.0	25.0-30.0	30,0-35,0		35.0-40.0	,	40.0-45.0		45,0-47.0	-	
1	Sample	Sampla	-		17		6	7	S.	9		7 15	-	8 23	9 25	0. S.	-	#	-	12 40.		13 45,0		
		Borensle Sar Number Nur					_ '																	

Control Cont		Sample		_	2	1						
40.0 20.0	5 6	ple follow		eg tr Set	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	re Master rs/ Conten	Set! Description	Particle State Analysis Gravel State Analysis Dry Meist				Permeability
10.51 10.52 10.5		1 0.0-1		2	83	25	til pt. pr	USCS (%) (%) (%) (pa) (pa) (pa)	(kg) (kg)	Pressure (pst)	Cr. la', (bst)	(cm/sec)
1924 4517 52 11 22 52 12 22 52 52				 			1					
19.04 48.7 9.9 13.3 13.4 14.5 15.5				-	<u> </u>	-	SEIT, dark arows, hat CLAY with sand (CH), moiss	5.2 43.5				
13.0-45 43.7 58 51 10 10 10 10 10 10 10	- 1			-	х.	13.8	3 3 3	STOCK				
150.0215 4217 58 54 1312 Next dat gray, incl. Victor, cash, meat 55 25 25 25 25 25 25 2	- 1			-		<u></u>	Locer, tradién brown, fre to medum, pochłograpa Siano (92)					
20.20.56 44.17 528 belance	- 1				 -	17.2	Hard dark gray, the CLAY (CPE, shape, moter					
17-8-8-0 4-2, 2 CORE					Refr		3					
190-400 1917 CORE Strong Stro		-		1	#E	-						
410-65 421.7 CORE Store Land Store				1	DI GE	_						
410-46 21.7 20R2		· 	_	 -	-		Stony, Gay, SLTSTONE and SANDSTONE, highly purionsed					
440-80 448.7 CORE Interest and a state Core Co							Stong, Gar, Still, Lineathord race foois					
4,6 5.0, 418.7 CORE				1	RE	<u> </u>						
Fine title seam a side Fine title seam a s	1			1	m m	_	חופלאיוח שובות אילוי איפטא ומחוב מו למיני					
10 C-550 4117 CORE Institute assets at 70 Institute assets at 850 Institute assets at 85				<u></u>		_	irnerione seam at 45.5					
50.0-650 4117 OORE Innextra cours between 600 and 51.0"						_	הודבונטיב במאוו או א7.5"					
250-500 246.7 CORE Arth Faccedade Innexes seam between 60 p. and 64.7 CORE Arth Faccedade Innexes seam between 60 p. and 64.7 CORE Arth Faccedade Innexes seam between 60 p. and 64.7 CORE Arth Faccedade Innexes seam between 60 p. and 64.7 CORE Boars 3.414 via convected file piezmeder 72.14. Boars 3.414 via convected fil	-			1 1	3	<u> </u>	in etime seams between 50,0° and 51.0°					T
50 C 68 0 2017 2018 Anh Biggranded formation seams to 8.0 and 88.3"	1"			1	in in	_						
26.50.0 556.7 CORE Horsy, fameting ocean at 65.0 17.0 CORE 18.0	1º {			1 1	ži		Ath Extended American seams between 50.0' and 55.1'					
75.075.6 3817 CORE SORWIG TERRANATEDATTO: ٠.				- Jag		ליניט'ץ, לוחופולבור מפשות שו פּאָ'ע'						
13.6.77.0 3887 CORE SORVIG TERMANTEDATTOR SORVIG TERMANTEDATTOR SORVIG TERMANTEDATTOR SORVIG TERMANTEDATTOR SORVIG 33.114 Value connected http pleament P2:114.	1"				35							T
Bochs Tribunated his pleameter PZ:14.	i-		1		35							T
Guring B-1:14 when connected hito pleasmeter P2:114.	- 1	•	_		_		BORING TEPALNATED AT 77.0"					T
	- 1	-		_			Sang But was connected also piezameter P.Z. 114.					T
	- 1								-			
				77	!							
		9	ASSA	S C	Ares	7.0	l		<u> </u>	nject: CITY OF ARL ocation: Arlington, Te	NGTON LANDFILL	

SUMMARY OF SOIL DATA AND LABORATORY TEST RESULTS	Umits Paricle Size Analysis UCS FULV CD Triexial Controlidation	(%) (%) (%) (%) (pcf) (pcf) (ccf) (c					00 559 401								3.05.09 (i)					1333 145.6 50.4								Project CITY OF ARLINGTON LANDFILL Location: Artington, Texas
SUMMARY OF SOIL D	Soli Description	Compact (6th brown, fire gaven SAND reft water			Sectio firm, settl redefin brown words or av	Leaze, fight meden brown, clayer SAND ISC) wer		Very loose, brown, medium to fire, pooch-graded SAND (SF), wet		hard, gray, fat CLAY (GH), study, moles	Mechan Stong, han brown, moderately weathered, SILISTONE				inerbodaed with state at 30,00	विवर्धामा जनतुः, दुष्तु, अभीत्		Smestone seams between 40 g and 45.0	Incelone tives between 42.0 and 43.0			Finestane hyer between \$2.0' and \$3.0	TC:2 21.55.0'	seam of internate at 57.5	with interbedded tayons of Smestone between 69.0° and 65,0°			
	Additive A Content	8	1	19.5	_	12.	16.4		17.7			_	_	7.5						5.4								
	Sample (Diows/ Control Type 18 (20)	15	2	17	-	60	r)	\vdash	12		Refusal	m	ш	<u>.</u>	tis	_	-11	<u></u>										rtes
	sam Sam Typ	8	23	88	-	1 58	SS		55		3	CORE	CORE		CORE		coke!	CORE		CORE	CORE	_	CORE		CORE	CORE		oris
	Elevation of Top (ft)		483.1	1,59.1	_	457.1	455.5		448.1		£3.3	41.6	-135,1		1:03:1		-123.;	423.1			413.1		408.1		463,1	398.1		Associates
	Sample Depth interval	2,0-1,5	2.0-3.5	4,0-5,5		5.0.7.5	7,5-5,0		15,0-16,5		20,0-21,5	21.5-25.0	25,5-30,0	25.2-	35,0-35,5		35,3-40.6	40.0-45.0		45,0-50.0	50.0-55.0	•	55.0-50.0		63.0-65.0	65.0-70.0		0
	Sample	-	7	(0)		4	5		9	7	P-	2	6		9		22	ů,	-		25	+	35	\dashv		17 65	6	
1	Borchale Number	3-715	8-116	3.175	8.115	8:1:5	6-115	3-115	B-11:5	3-115	3-115	B-715	3-1:5	9-115	9-115	8-115	3-116	B-115	8-115	5116	9116	9-4:5			3.115	3-116		

	Permeability	(man)		
		Or a', (pa)		
	Consolidation	ਨੌ		Project: CITY OF ARLINGTON LANDFILL
	1	હ		GTON
		Type		F ARLIN
	Conflaing	(jsd)		CITY 0
	O Triaxist	.0		Project CITY OF ARLING
	UCS (UV/CU Triansa)	(B)		<u></u>
	DO 100	(jsd)	_	
	8	2	_	
i i	Maist Unit wi			
T RES(Lhit of			
Y TES	Particle Size Analysis et Sond Silt Clay (%) (%) (%) (%)			
\$4T0R	Particle Vret Sand	-	_	
3	Umite Parade Size Ar Gravel Stand Siz U USGS (%) (%)	-		
	Limits		力	
	5 7	1		
	Azerberg Limits		\perp	
	Azerberg			
	id To Ti			
COMMUNICATION OF SOIL DALLY				
			J.	
SUMINARY OF SOIL DATA AND LABORATORY TEST RESULTS	Soil Description Attention Attention		JED AT 77.02	
SUMINARY OF SOIL DATA			S TERMINATED AT 77.0°	
	Soil Description		BORING TERURWITED AT 17.0'	
	Soil Description (75)		BORING TERMINATED AT 77.0"	
	Soil Description (75)	ORE CALL	BORING TERMINATED AT 77.0"	T. Afes
	Sent Mostave Sent Description Sent Descript	- 1 - 1	BORNS TEMBNIED AT 77.0"	older sociates
	Sept. Sept	366.1	BORING TERUNATED AT 77.0"	Golder Associates
	Sept. Sept	75,0-77,0 388.1	BORNS TERMINATED AT TO O	Golder Associates
	Sept. Sept	19 75,0-77,0, 388_1	A-115 - BORING TERMINATED AT 77.0"	Golder

		Permeability	(anvsec)		T							T						3.2E-07 (h)												
			C' (psf)		T		1	T		T	T	T	I^-	_		-								-	\dashv		1	\dashv		,
		Police	ช้	1	T		1	T		\vdash	T			_								-	\dashv	\dashv	\dashv	\dashv	+	\dashv	NOE	!
		Consolidation	ਤੱ		T	T	T	T	<u> </u>			-							\dashv	\dashv	-	1		\dashv	\dashv	\dashv	\dashv	\dashv	TON O	
			Type		Ė	I									1		\dashv	7		7	+	1	1	\dashv	-		+	-	ARLING	- L
		Confining	(psd)											1	1				\dashv	-	\dashv	+	\dashv	+	\dashv	\dashv	+	-	Project CITY OF ARLINGTON I ANDER	Location: Adinoton Texas
	laxial		(dap) .									-		7	7	_	+	1	+	+	-	+	+	+	\dashv	\dashv	- -	\dashv	oject O	ratios.
	UCS / UU / CU Triaxial	3	ح (لعر) ﴿ ﴿ (طعق)									7	1	7	1	-	\dashv	-	\dashv	+	+	+	\dashv	+	-	+	+	\dashv	<u> </u>	
	UCS/U		(Eg)									7	1	\dashv	7	+	\dagger	\dagger	\dagger	\dagger	\dagger	+	\dashv	-	+	+	+	-		
		25.5	182							1		1	1	-	\dagger	+	+	+	\dagger	+	+	5.0	-	+	1	-	970	\dashv		
		Moist Unit w							7	1	7	+	1	-	\dagger	\dagger	+	121.8	+	\dagger		C.O.	+	+	+		2	4		
		City C			-		7	\dashv	7	+	\dagger	1	\dashv	+	+	+		1.002	+	+	0 91	+	+	-	+			-		
	-	Clay C		+	\dashv	\dashv	\dashv	ř.	+	+	28.0	+	+		+	-	+	-	+	-	- -	-	+	+	+	- -	2	+		
	Particle Size Analysis	Sand Sill	8	+	+	\dashv	1	\perp	_	_	_	\downarrow	-	-	1	\downarrow	_	1	_	_	_	_	1	1	_	_	1	_		
	Page -	Gravel Sa		+	+	+		1.5 20.4	+		32.9	+	+	- -	+	-	-		+	+	-	-	-		-	+	-	-		
		9 9 9 9 9	3	\dagger	\dagger	\dagger		ಕ	+	-	+	+	+	\dagger	+	+	+	+	+	+	-	╁	+	+	+	+	+	$\frac{1}{2}$		
	Afterberg Limits	-	3	7	1	1	1	20.0	1	+	1	-	1	1	1	1	1	\downarrow			_	\downarrow	士	\downarrow	†	1	1			
	the th	ā	-	_	1	1	ţ	=	1	1	1		+		\perp		\pm	\perp	-		-	+	+	╬	+	+	╁	-		
			T	+	+	+		-	+	+	-		-	- -	+	+	+	+	-	-	-	-	-	-	-	-	-			
	Sai Description		ישים אינים ליינים אינים וויינים אינים וויינים אינים איני מושל היינים אינים אי	Egal Eroma at 2.9°		Sett to fam, tennish separa, tenn GLAY with same (CL), motor	Story Control	Sem to celf, Europen at 3.0"	Fim. redicth trown. to acy lear, CLAY (CL)		dut crown at 15.3	Hara, gray, fat GLAV (Crt), ahakey, with sand		Medich strang, gray, unweathered, Styld, with seams of sanatrons			Medun stang, unvestboted, SILTSTONE	Medium Strong, unweathered, gray, SHALE	sound of Emestance at 37.8'			seame of Americas Debreer 50.0' and 55.0'			seam of kmestone at \$3.3"					
	Value Maisture	(%)	t ai	10.6	5.27	T-	13.9	15.0		27.3	1	T.	T	3	T	l	1.5	- E	8	-	11.7	- 8	 	-	ą	5.8				
SPT	Z Sign	THE PERSON NAMED IN	en .	1-	,,					۲.			Refusa	Reluse	-	\vdash		-		-						-			9)
-	16	r.	8	SS	133		Ë	r.		S			83	ss	CORE	CORE	CORE	SCRE		CORE	CORE	CORE	CORE	CORE		COPE	CORE		der Ger	44
	Elevation	÷	465,4	453.4	461.4		459,4	2,725		35			4.6.4	41.4	6,833	439,4	435.4	430.4		425.4	+20.4	415.4	410.4	405,4		F7007	355.4 CORE		GO	1
eldi	Depth	(H-bgs)	0.0-1.5	2.0-3.5	5.0-6.5		5,0-6,0	8,0-10,0		15,6-17.0		,	19.0-20.5	24.0-25.5	25.3-25.0	26.0-30.0	30.0-35.2	35,0-42.0		40.0-45.0	45,040,0	52,0-55,0	55,3-60.0	80,0-65,0		65,0-70.0	79,0-75.0	and and	Golder Golder	1
Sample	ample	3		~1			٠,	5		10		 _	7		52	10 26	11 30	12 35		13 40.	7. 23.	15 52	1ē 55.	12		18 55,	19 78,0		Carl Carl	•
	Borehate 9	urroer	P-116	3-115	6-116	5-1-6	8-116	0.1.0	B-135	B-116	3:18	9-11-6	\$-716	B-: 75	9,1.9	311.0	8-176	ö-116	3,1.6	3-1:6	3-116	31.75	9-136	B-16	51.5	9-1-6	3-1:6			
	1 2												w)	47	10		tr2	10	r)	ıń.	8)	"	гò	۵	ı3	ıh	rh			

		Permeability (cm/sec)							
			a. (bzt)						
			ชั				7		
	Characteritae		ď						
			ar.						
	П	Confining	(se)						
	1 1	3	c (bat) \$. (qet)						
	UCS / UU / CU Triavist		c (bgt)						l
	ncs/	3	(ig)						
		, c. c.	ĝ å						
		Unit wi		140.0					
		36	136.5	C. C.					
	Particle Size Analysis	25 CB 25							
	uticle Size	Gravel Sand Sitt Clay	-	\dagger	十	\dagger	\dagger		
		Gravel (%)		1					
	age .	n uscs	-	-	+	+	\downarrow		
	Anerberg Limits	<u>a</u>	_	1	-	_	1		
	•	그			1	\downarrow			
	riptian			nd 77.9					
	Sol Description			reen 76.0° 4			15.0		
				hym of barg fmestone between 76,0' and 77,0'			BORING TERMINATED AT \$7.9"		
				of barg fm			ING TERM		
-	Sture	₹	11.3	i i		 	BOR		
10	N N N N N N N N N N N N N N N N N N N	£	÷.		<u> </u>		-		
F	Sample Colours Content	T'72e	CORE		ವಿಜನ	CCRE			
	Elevation S	€	390,4		325.4	380.4			
	52		75.0-86.0		20.C-85.0	85.0-87.0	$\left \cdot \right $		
Granie	Depth loterval	15	20 75.0-						
	Semple	Der Nur	-	ا بو	23	zz g	- J		
	Barehale	Eng	2	5-1-6	E-176	9; 2.0	211.5	י אורעים ישרפיטה איינו אבארציטים פרוניו ואור וווא אורעיטי אורעיטי אורעיטי איינו איינ	

Control Cont	-			-	-																
1. 1. 1. 1. 1. 1. 1. 1.	1 66	Sample Depth ind interva-	1	Pag.	SPI	Moistu S/ Confe	Sel Description	Attenderg Limits	Gray	e Size Analysis			2 SD		U/CU Triaxial CU	Confinin		Console	ation	d.	Permeability
2-2-4 47-5 55 11 15 Windows born, born, and/red fined in solar born, and/red fined in solar born, born, born, and/red fined in solar born,	T .		7	05	S;	8,5	Supplet (codest brown, dayey SAND (SC), moist	בי זי ל.	8	Ê			(kst)		ر(عوز) ﴿ (طور	(std)		હ			msecj
1.0.1.5 1.0.1.5	- 1						Stif, redesh atown, sarety lean GLAY (CL), most		1		_			1	-	_			\dashv	-	
1. 1. 1.	***	-							-	_	_			1	+	1			+	\dashv	
4,04.5 41.5 81.5 81.5 Wilyjana, windon brown, from cauter, wing prided \$4.00 me day 6,04.5 45.05 42.5 82.5 Wilyjana, windon brown, from cauter, wing prided \$4.00 me day 4,04.5 42.5 42.5 82.5 Reducta 4,04.5 42.5 42.5 82.5	- 1	-					Compact, reotith brown, the to source, clayey SAND with gravel (S.C.)					\perp		1	+	_			1	\dashv	
\$6.04.5 \$35 \$25 \$77, total all \$1.5 \$2.05.5	m						-			+				\top	-	4			\dashv	\dashv	
140-152 444.6 28 6 71-1 John staff of the property 140-152 444.6 28 Rectand 135 140-104 14	7				<u> </u>				+	-				\dagger	+	_			\dashv	-	
150-15 4446 SS Patrial 134	vo			├─							_	ŀ		1	-	_ .			+	-	
120-213 4446 58 Reduct 134										_	_			1	+	_			-	+	
13-52-13 4366 587 Feetensi Feetens	9		ļ	-	SRetus	1			+	-				1	+	_		1	-	\dashv	
13-28-26 CORE With the median effect than ellipsion, ellipsi	1		<u> </u>			77			1	-			1	\dagger	+	1		1	+	+	
25-5-50 25-5-1 CORE				_	_		Wesk to maden strong, Epis bronn, SLISTONE, moderately weathered		-	-				\dagger	+			1	+	+	
256-260 2-32 CORE Week gray, Styles, washings	23	21.5-25.	L	1	100				-	-	\perp			\dagger	+	1			+	+	Ī
300-250 4285 CORE	in l				35					-				\dagger	-			1	+	+	
355-400 426.5 CORE Interface such at 25.5 Acres CORE Interface such at 25.5 Acres Ac	0	1 1			3;€		Weak gray, StiflE, unweathered			-				╁	-			T		+	T
430-450 415 CORE	25				iñ.		dark gray, strong at 35.5°			-				1	-			\dagger	+	+	T
150-250 41-56 CORE	14				ત્રદ		וויסטונו אברות או ל0.0"			-			1	\dagger	+	_		T	-	+	
550-550 41-6 CORE	- 1						imestor serm at 42.5°							\dagger				T	+	-	T
200.55.2 26.5 CORE	12				- Di		7.24 12 XETW			-				\dagger	-			T	+	+	T
Second Access and size Cores C	#	~			₹.					-			\dagger	\dagger	+			†	+	-	Ť
SS C-GLO GOUGE GROWER	- 1	٠,					(mercon seam at 52.0"			-			\dagger	1	-			\dagger	-		T
Concess Conc	2			- 1	팷		arectum sporg at 55.7						\dagger	\dagger	-			\dagger	+	-	T
100-05-50 358-5 CORE	- 1						imegone seam at \$5.5'						1	\dagger	-			\dagger	+	+	T
S00-S56 S38-5 CORE	1						Unestone seam at 57.5.						-	-	-			\dagger	+		T
Golder Associates	ω				맭	ļ	Weak at 50,0"		-				-	\dagger	+			\dagger	+	+	
	12	65,0-73,0	1 1	1 1	91								\dagger	\dagger	-			\dagger	+	- -	T
	1		A																		11
		0	ASS	S. C.	artes	**									Projec	t CITY	OF ARLI	NGTON	LANDEILL		

SUMMARY OF SOIL DATA AND LABORATORY TEST RESULTS	Allendergo Librar Particle Size Arealysis Dry Wiest U.S. v.		Projectic Control Candella Projectic Ciprio Candella Location Adingion Testing on Landella
	Soil Description	Borang Terminated at 72.0° Boths 8-1178 was cocumited Edg piezometer P2-1178.	
	SPT Netter Mosture Type 1th (150xs/ Content Type 1th) (150xs/ (55)		
	SPT Nebule (Clows.		r
}	Sample Type CORE		side ocie
1	Elevation of Top (f)		Golder Associates
	10	. ,	No.
	Depth Interval (Il-tops)	' '] ']	建加度
	Sample Depth Sample interval Number (fl-togs) 18 70.0-72.0		O

	Permeability (cm/sec)								I				1.5E-08 (h)	9.6E-09 (v)								
	o', (pst)						1															긜
	Consokdaten Cc, Cr,																				1	LAND
																		1		T		NGTON
	17.00		Щ.																			Project CITY OF AREING
	Confring Fressure (psf)	11																				Project CITY OF ARLINGTON LANDFILL
	C (pst) \$\\ \delta\(\text{cu}\) \ \ \delta\(\text{cu}\) \ \delta\(\text{cu}\) \delta\(cu																					Project
																		1			1	
	1 1 5 1																\mid	\top	1			
	UCS - c.											5.00					1	7		4		
T.S	Most (pcf)											137.3	U.S.L			T			T	141.9		
RESUL	Unit wit (per)					T	T			1	1	\$ 27	4	T	1	\dagger	1	\top	†	126.5		
TEST R	Analysis (Clay (%)			8.85.9							1	\dagger	T	\dagger	\dagger	1	+	\dagger	-	+		
ORY	Paride Size Analysis Gravel Send Sit Clay (5) (5) (5) (5)		+	2	+	+	 	+	H	\dashv	+	+	+	+	╁	+	+	+	+	-		
BORAT	(3.52)			65		\dagger	I^-					1	\dagger	\dagger	\dagger	\dagger	\dagger	+	\vdash	-		
8 2	its		1 1	ರ														<u> </u>	\dagger			
JA AN	Atterberg Limits			n n	25 0.58		-	\vdash	\vdash	+	+	+	-	-	-	-	-	F	\vdash	-		
ojr DA	L 21		3		17 17				_		-	1	1	-		-	-	1				
OFS						1		y		-	-	$\frac{1}{1}$		T	-	-	-	╁	-	\Box		
SUMMARY OF SOIL DATA AND LABORATORY TEST RESULTS	Seit Desempten Seit to Sem, (cedan brown, sandy lean CLAY (CU), s1gray modez	ire-art, who layes of makey lean day	Very soft to fam, reddish stown, sarecy Mart GLAY (Cl.), most	Cash at 3.0"	ייין איניין, איניין איני איני איני איני איני איני אי	Compact, brown, wel-graded SAND with graved (SNV), wet		Wesk, gray, Sknostone and Shale, weddreed, filesbedeed and right satisfiated						Hedam stong, pray, SHALE, sandy, unweapered	Weak, gray, SANDSTONE and SHALE, weathered, interbedded and highly lamininged	Modium strong, gray, SNACE, sandy, unweathered				৮৮৮ ক্সতন্ত ব্যধিত্র		
	Sture niem %)	3 ,	18.5 V.	21.2 (ras)	7.0 × 3	Cem	-	N.C.	+	-	*1	-	-	2,00	(Veal)	Wed		ļ.,	-			
	Serrice Moderner Serrice Moderner Type 111; (%)	(t) 4	61	23	in in its		Refusal		Refusal	-	1;;	13.1						_		12.2		幼
	Sample (b)	8 8	SS	SS	SS		SS Rei		SS Ref	CORE	-	-		CORE		CORE	CORE	CORE	CORE	CORE		eriate
	Elevation of Top (f)	462.3	458.3	456.3	450.E	7	445.8		446.8	1	1	-		429.3 C		1243 C	215.3	414.3 C	405.3 C.	404.3		Associates
	Pin State	N 4	6,07.5	2.6-0.8	13.5-15.0		16.5-20.0		28.5.30.0	_L		<u>ــــ</u>			+							No.
	Sample On Sample Inte	6 E	4 6.0	in in	5 13.5				_	-	31.2-31.9	31,9-	_	35,0-42,0	-		45,0-50.0	59,0-55,0	55.0-60.0	60.0.65.0	THE STATE OF THE S	D
	ا اینف ا						2R 7	x 1		5	Œ	Œ		E	-		£ 5	и 1	15	49		
harrier sources	Boracal Numbo Barres	Bunda Ration	F 1184	8-11-BR	8-112R	F 11.8		¥ 1	2 48	5-1168	£-118R	8-1138		8-11-8	B-318R	8-118B	B-118H	9-112R	P.1168	B-115R		

		UCS / UU / CU Triaxdai	(psf) c'(psf) φ'(deg) (psf) Type Cc. Cr. σ', (psf)					Project. CITY OF ARLINGTON LANDFILL.
SSULTS		Dry Make Unitwo Unitwo UCS-c						
SUMMARY OF SOIL DATA AND LABORATORY TEST RESULTS	Partial Cine America	Gravel Sand Sill Clay	(%) (%)					
SOIL DATA AND LAI		Attacheng Lamits	2					
SUMMARY OF		Saž Descripson	famicatore seams between 65.0 and 70.0		***************************************	Boring terminated at 78.9"	Soriny Bill BR was converted ond placemeter Plater.	
		Sample (Nows/ Content Type 17) (%)	Į.E.			98	8	CA)
[g ₎ =	tmple (2kg	CORE	CORE	CORE	-		Golder
ſ		Elevation of Top (F)	359.3	394,3	365.3			
-		5	1,7	"			\vdash	Y Y
			-75.0	7.5.5	.78.0	١.	.	
-		Sample Inferval of Number (h-bgs)	17 85,0-70.0	18 70.0-75.E	10 75.0-78.0		, 	

		16on Permeability	Cr. G., (psn)	1						5.5E-07 (h)																	Project CITY OF ARLINGTON LANDFILL
		Consolidation	3	┼	\vdash	\dagger	\vdash	-						\neg	-	+	\dashv	+	+		+	-	+	+	_		STON LE
			Type	-	-	+	-				7		1	\dashv	-	-	\dashv	\dagger	\dashv	+	-	1	+	+			Project: CITY OF ARLING
	ĺ	Confining	(pst)			1981	3866	5053		1080		7	1	1	1	7	\dagger	\dagger	\dashv	+	1	+	\dagger	+	-		CITY OF
		- 1	در (لعدل) ﴿. (عوم)			8	12	21					1		1	1	7	1	1	1	\dagger	-	1				Project:
		מול מול				432	21	452												1	\dagger	1	1	1			
	١	1 2	689							3341																	
	-		(g)		_		_	_	_	4		_	_	1	_	\perp						,					
LTS	-	Moust		1		128.8		_		13.9	_	_	1	_	\downarrow	_						200					
RESU	-	A S		_	+	107.4	\downarrow	4	-	110.8	_	_	_		_	_						¥ 623 ×					
/ TEST	Particle Size Analysis	Sit	(£)		8,18				54		G,																
ATOR	Particle S	Sand Sitt	3		, je		_		285			_				1				Ţ			ļ		-		
LABOR	-	Gravel	SSS	- -	2	+	+	- -	8.0	- -	3	+	+	-	+	+	-	-	+	+	-	_	-	-	}		
AAND		E I	2		3	- -		1	1	†	1	1	\perp	1	\perp	1	-		\perp	1		\perp					
L DATA		1.	r.		2	d Z	_	1		+	-	\downarrow	\pm		1	1		\perp	\perp	-	+	1		\vdash			
OF SOI	-	:	4	+	- 1	ž	+	-	+	+	,(2g)	-	+	+	+	+	-	-	-	-	+	-	-	-			
SUMMARY OF SOIL DATA AND LABORATORY TEST RESULTS		Soli Descripcion	Soft to fifth, oath brown, lean CLAY with sand (CL), signify moith	थक्तर स्वीत स 2.0				stiff, redoish brown at 5,0°		1	Compact, brown, fire, well-graded GRAVEL with day and earld (GWAGC),		Hand, Statt, fat CLAY (OH, stady, model		Medium streng, gray, highly weathered SILTSTCNE		Stens, 5739, 2205; SHALE, inneathered		Enteriore seam at 45.5	potentianal secure of investone between \$3.0' and \$3.0'				BORNAG TERMINATEGAT 72.0"			
		Content (3)	15.55	1.0	20.02	_	_	1.61	18,0	1,5		20.3										14.3					
	(i) ×	Sample (nlows/) (Type : 11)	8	Ŧ,	HS.	-	-	35	7	12	-	t3		5 Refusal	_	Ш	lii.	ш		(EJ)	W)	_	w				r
	H	of Top San	464,9	-	 	-	\vdash	╁	\$ S.	83		SS		SS 6.	_	A CORE	.9 CORE	e.		B CORE	9 CORE		e core				olde Social
	1 1-			.0 462.9	0 460.9	2	9	2,55.9	156.9	1.5 449.9		6.535 445.9	_	5 435.9	ļ	436.4	0 431.9	.0 421.9		6,11,9	6.10÷ 0.	0	9,795 0.	_			Associates
	Sample	ord (H-5gs)	0.0-1.5	2,0-4,0	4.0-6.0	4.7.4.2	4243	5.5-2.5	8.0-10,0	15,0-16,5		19.0-26.5	١,	25.0-25.5		26.5-33.0	33,6-43.0	43.0-53.0		53.0-53.0	63,0-73,0	55.0-66.0	73.0-78.0			No.	
	 	ole Sample	3	. 2 2	m m	ıξ	iř.	er er	43	to to	-cc	7 7		en 		63 	÷	;;		12	<u>e</u>		7.				
	Ш	Borehole Numbar	B-1152	8-1158	8-1153	B-1:5R	B-119%	8-1752	9-115R	a-115R	8-1158	3+179R	B-110R	B-173R	3.119R	B-+159	B-119R	E-112R	B-110R	B-115R	8-1162	8-3158	E-1192	S-1138			

SUMMARY OF SOIL DATA AND LABORATIORY TEST RESULTS State		Contains Consolidation Permeability	(pst) Type Cc, Ct, O', (pst)					1LC 0.07 0.009 3600																	Project CITY OF ARLINGTON LANDFILL Location, Arington, Texas
SUMMARY OF SOIL DATA AND LABORATORY TEST RESULT		000	(kst) (kst)												4	ناحت							-		Project
Sumple S	SULTS			+	+	+			+	+	+	1	-	-	-		-	-		{		-			
Sumple S	EST RE	ļ	3	+	\dagger	+	+	-	57.4	+	+	-	-	+	+	3	+	-	127	+	+	╂	-		
Sumple S	TORY TI	Sand Six A	<u>E</u>	-	+	+	+	+	_ _	_ _	+	+	-	-	+	-	-	+	+	-	+	+	_		
Sumple S	BORAT	J. J.	£ 91	-]_	_	1	1		-	1	1	1		1	_		1		1			-		
Sumple S	AND LA	Limits	2	19.0		1	5	SBG	\perp	1	_	-	1	-	-	-	+	-	-	-	+	-	•		
Sumple S	DATA	1 1	5	- E		\perp	15 29	16 24	_	F	lacksquare	\prod	$ar{1}$	1	-	-	T	-	1		-	-			
Sumple S	JF SOIL				+		1	\$	-	\vdash	F	F	\vdash	-	-	-	-	75	\vdash	F	-	F			
Sample S	SUMMARY C	Sol Description	in. brown and yellowsh terwn, lean CLAY wen sand (CL), sightly:		H 3 2 D'	m. arowa, sanay lean QLAY (Ct.), etgaisy moisi	sy colf at 5.5°	oliket yallowen brown, redeath brown, and brown as 6.5"	म १० दक्षी था १६.छ		וים. היאי, (או הובא (הוי), נושא, וחסיב	ty annse, ight brown, the, poody-greded SAND (SP), main	cak, gray, weothered, sandy SHALE		קירנו בבאל הפינר פוריצוכאפ	posicinal sand seams at 45.0°	yaidso	dum chong, gray, cancy Shale, urweathered, occesional seams i		i Émeriane saams between 55,0° and 79,0°		RING TERMINATED AT 78,0"		·	***************************************
Sample Surple S		Moisture Content (%)	G.	1	_2_	<u> </u>					1		\$		1	83	Ç,	23 65		<u>\$</u>		go			
Sample Sumple (1994) Sumple (1994) Manna (1994) 1		SPT N Value de (blows/ 1 ft)	Ly											1					<u> </u>						fes
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Samp Samp												-	1	1		_	1 1						olde
26.25 C 4 0 4 0 4 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1														L	ļ										ASS
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Sample Depi intervities (ft-bg			<u>'</u>		-											·			-	-		N.	9
		Borehole Sam Rumber Num	6-1205 1	-	8-1308	E-1208 3					B-130E	9-120R g	в-120А 9	8-125R 10	5-120R 11	B-120R 13	\$-120%	8-120R	3-122A 13	8-125R 14	B-125R 15	a-120k			A Company of the Comp

ű	Sample	-		lis.	_																
Semple	Depth interval (ft-bgs)	Bevaten of Top (ft)	Sample (clews) Content Type 1 B; (%)	Value (Physics 1 E)	Comis (%)	nd Soil Description	~ }-		Sande Sand	Particle Size Analysis	<u> کا کی ا</u>	Moist Unitw			UCS/UU/CU Texasi		Confining	ő	Consolidation		Pomeability
	0,04.5	464.4	83	**	_	Fum to 2015, Drawn, bean CLAY with sand (CL), moist	7 7 7		E	<u> </u>			(gg)	(psd)	c (ba) ((deg)	(Gap)	1 1	Type Cc.	ŭ	() sd) *, o	emise (minse
61	2.0-3.5	÷62.4	SS	9.	17.5	T	44 15 23 0,09	-	-		_	_	_	\perp		-	- -	-	+	-	
113	4.0-6.0	262.4	F	_	15.5	अस्तु जार्म वा 4 क्ट		-	-			+	_	_		+	\dashv	\dashv			
7	6.3-8.0	459.4	ř				+	+	-		2	2 2	_ -	_ _	1	\dashv	\dashv	\dashv			7.2E-09 (h)
'n	5.0-5.5	456.4	83	113	5.	Frm to stift, brown, sanety lean CLAY, mood		-	-		- ;		_	1		+	\dashv	-	\dashv	_	
Ü	13,5-15.0	450.3	88	ı.	16.2	1		di	93 856	3		100	1	2962	1	+	28	-	-		
	,				_	Hart, gray, ta CLAY (CH), shaley, malet		+			_	1	_	\perp	1	+	+	\dashv	-	_	
۲.	15.5-20.0	444.9	SS	Refusal				+	-		_	_	_			+	\dashv	+		\downarrow	
9	23.5-25.0	40.9	SS	Refusal	22	Very derre, gray, ane, poosity-graded stand (SP), most		+	-		_	_	_		1	+		\dashv	+		
m	28.5-30.0	435.9	SS	Refusal	18.0			-			_	1	1	1	1	+	+	+	+	-	
9	33.5-35.0	4303	S	Refuszi	-1-			+	-		_	1	_		-	+	+	+	- -	1	
ţ:	38.5-40.0	425.5	Se	Refusa	20.2			\vdash	F		_		1		+	╁	+	+	+	-	
57	43.5-65.0	<20.9	88	Refusal				-	-		_	_		L	1	+	+	+	+	1	
민	45.5-50,9	419,4	CORE			בינו פואל התפלוות מוסהם, בהארפתיפונים לאקוב		+	-							+	+	+	+	_	
*	50.0-55.0	77,77	553					+	-							+	+	-	-		
ş	55.0-60.0	409.4	במצב					\vdash	-		_	_			1	-	- -	+	+	_	
	58.4-57.1				241			\vdash			119.3	136.6	22			-	+	-	-		
	,					Emericane seants between \$7.5' and \$9,3'		-			_					+	+	+	+	_	
Ġ.	90,0-65,0	270	CORE				-	-							\perp	╁	+	+	-	\downarrow	
17	65,0-70,0	355.4	CORE					+	-		L	_		\prod		+	+	+	-	1	
ž.	70,0-75.0	354,4	CORE		_			-	-							-	-	-	+	_	
ž.	25,0-77,0	359.4	CORE					-	-						-	+	-	-	\downarrow		
	,					BORING TERMINATED AT 77.5		-	ļ						1	+	+	+	+		

Project CITY OF ARLINGTON LANDFILL Location: Adington, Texas

10 10 10 10 10 10 10 10	Dept Elecation R	Septration Sep	SUMMARY OF SOIL DATA AND LABORATORY TEST RESULTS	Attenting Limits Particle Size Analyzis USA / UU / CU Trookal Conformation Consolidation	LL P. L USCS (W) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%		(07.5 128.0			NWE 157 74; 102			1300																	Project CITY OF ARUNGTON LANDFILL
SFT Natural Natura	Color Colo	Sample Spring S								cay and grave			ams of sarctston								5.0" and 60.0"					72-122.				
(170 m) (170 m	10 10 10 10 10 10 10 10	Sample Sungle Integral (Upple Integral	SUMMARYC		fin to very stiff to and sendy less CL at year.	nn io very suri, brown, sandy iean CLAY (CL), molts	With the self the sel	SSII to very ssill, brown, lean CLAY with cand (QL)	11H, trown, sandy ken day (GL), mota	lense, Irown, coarse to fine, weilgraded SAND with o SWISC!	ompact 2: 13.5"	לשית לשוג קרש), אשימה (פנ היא (פה), אושלה	'ery dense, gray, pooch-graded SAND (SP), with xe		land, gray, sandy fal CLAY (CH), shukey	STORY, Unweathered, clayer SILTSTONE		DODE, CACK GTRY, UMMEASHERED, SHALE	Th shids between 45.0' and 50.0'		letheoded with Untiling scams between S				ORING TERMINATED AT 75.0"	ating 5-122 was conversed five piezometer		Γ	***************************************	
(170 m) (170 m	Depth Elecation Co. 1.5 Co.	Sample Sample Deph Group 1 0.0.15 461.0 2 2.0.40 461.0 2 2.0.40 461.0 3 4.0.60 451.0 4 0.0.75 462.0 5 0.0.75 462.0 1 2.0.40 443.4 8 2.5.5.00 443.4 9 2.8.5.00 443.4 10 2.5.5.00 443.4 11 45.0.50 476.0 12 45.0.50 476.0 13 45.0.50 476.0 14 5.00.50 476.0 15 5.0.40 476.0 16 5.0.40 476.0 17 6.0.70 476.0 18 7.0.73 476.0 19 7.0.73 476.0 10 7.0.73 476.0 11 7.0.73 476.0 12 7.0.73 476.0 13 7.0.73 476.0 14 7.0.73 476.0 15 7.0.73 476.0 16 7.0.73 476.0 17 6.0.73 476.0 18 7.0.73 476.0 19 7.0.73 476.0 10 7.0.73 476.0	SUMMARY (Ffm is very still forms and in the still file.	9.	_		20.9	102	10.1	21.1	26.0	[c	Hard, Stay, sendy fal CLA)	String, Gray, Univestitated		Spong, tax gray, unvestitizetet, SHALE	with shafs between 45.0' and 50.0"		electroaded with Unitedant seams between St				BORING TERMINATED AT 75.0"	Bating 5-122 was conversed for piezometer				
		8 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SUMMARY		(%) (%)	: 6:			15 20.9	32 10.2	27 10.:	52 21.1	Refusal 26.0		Refusal have, gray, sendy fal CLA)	Refusai Stang, Gray, Unweathered	ŭ.		with shifts between 45.0' and 50.0"	리본		표	RE		BORNG TERMHATED AT 75.0	Bailing 5-122 was conversed the piezometer				Tales of the contract of the c
		Res - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SUMMARY	SpT Sample (Siewed Contain Transport Contain Tra	SS 5 5	3 13 1.65	***	SK	SS 12 20.9	SS 52 10.2	SS 27 10.:	55 52 21.1	5.5 Refusal 20.0	SS	SS Refusal need, 319y, sendy fall CLA)	SS Refusal Stang, Gray, Unweathered.	- 1	CORE	with shifts between 45.0's and 50.0"		ССКЕ		7	CORE	BORING TERMINATED AT 75.0"	Bating 5-122 vzs cenverzd kva piezometer			1	rolder

1
Sed Description
Stif. dark brown, izt CLAY with sand (GH), moist
Siff, brown, 1st CLAY (CH), moiet
Still, stown, sendy fat CLAY (CH), strist
With layers of track between 13.0° and 15.0°
Compact, brown, coarse to fine, well-graded SAND with gravel (SW)
Hand, gray, far CLAY (GH), strakey, moist
Very derse, gray, fine, poory-grades SPND (SP)
Work, gray, weatheren, SHALE, with silktone and sand lamnatons.
Weak, gray, whathered, SR,TSTONE
Modeum strang to strang, gray, universitieted, SHALE
Imperions seam of 65.00
Imoskane seam between 23.0° and 24.0°
BORING TERMINATED AT 85.0"

RESULTS	UCS/	(24) (24) (34) (34) (34) (34) (34) (34) (34) (3				70		41 224 724			CO 103 89.7						117.4 129.3 5.15.19.0h.							122.3 (36.7			Project CITY OF ARLINGTON!ANDFILL
	Soil Descripson	Self, Srown, sarcy bar CLAY (CL), dry	TRASH	with sarroly day git 4.5"		Fith 15th and dark brown, Jean CLAY with cased (CL), moist	Compact, brown, fare grained, poeth-graded GRAVEL (GP)		Very stift, brown, lean CLAY was sand (CL), moon	Hase, gray to each gray, tot CLAY (CH), what, most		Ngrt brown, the grained sard partings at 25.0'		Areden strong, brown, SALTSTONE, weathered with occasional state acoms		Medium stong, blown, 81,157 ONE and SHALE, interbroder, weathered		manufactura de la companya del companya de la companya del companya de la company	יאכמיה פוסאן: קונאן Stat, Stat.E. נואיפבוחם	Egh angle fraction of 12.5	ال 12 مستعدا فاوسد الونا	high angle transce at 54,75				imestene zezam zi 62,5°	
	Nample (Slows/ Content 7/95e 1 ft. (35)	1: 9.0	Us	9.	v3	10.5		16 24.8			Ratusal 19.5	Refusal 15.2	Refusal	Refusal			10.1							5,17			
ŢĒ\$	- - 2	8	SS	S	ß	SS		SS			SS	SS	3	88	CCRE	CCRE		CORE	CORE	•			CORE		CORE		Golder (F)
)	S. S.		460.5	458.5	458.5	454.5		4.724			442.5	437.5	232.5	427.5	42E.D.	422.5		417.5	412.5				407.5		402.5		l Go
158	Stevasion of Top Sam (II)	462.5	9								10	6.5	5.5	10	0,0	40.0-45.0	-6,74	45.0-50.0	50.0-55.0	-			55.0-60.0	57.3-	60,2-65.0		
	Elevator of Top (ft)	462.5	—		5.7-5.	1.0-9.5	,	0-16		.	5	0	3	a l	4	ંધ	51	(5)	٠, ,		. 1	- 1	식ㅣ	[S	(5.4	. 1	THE PARTY
Sample SFT	Sample interval of Top Sam Number (8-552) (10	462.5	2 2,0-3.5 46	3 4.0-5.5	4 6.0-7.5	5 8.0-9,5	,	5.0-16.5	-		7 20,0-21,5	8 25.0-36.5	\$ 30,0-31.5	10 35.0-36.5	11 355-40,0	12 40.0-	-	13 45.0	7. 50.				16 55.D	57	16 60.0		

		Permeability (cm/sec)						1		T
			() sd) *, p							
		Consolitiation	ชั			1	_	1		
			3	_	_	_	_	_		
			, ype		-	+	-	\downarrow		
		Conficing	(6	-	-		- -	-		
		UCS / UU / CU Triaboral	c' (pst) (\(\(\text{cud} \))			-	+	+		
		SS / UD / (9	+	- -	+	+	+		
		UCS. C. UU. C.	ē .	+	+	+	+	+		
	-	Moist Unitwe UCS	8	+	+	+	+	+		
SUMMARY OF SOIL DATA AND LABORATORY TEST RESULTS	-	Doy M		+	+	-	+	+		
ST RES	in the second			+		+	+	+		
RY TE	Cariota Crea Aminet	S S	e e	-	-	+	-	-		
RATO	Chinago	Gravel Sand Silt	<u> </u>	+	+	+	-	+		
CABC	r	Ç	3	T	-		T	-		
ra ANE				-	-	+	+	-		
JIC DA'		Afterberg		-	1	-	+	-		
OFSC			T			ľ	1	T		
MARY										
SU		u G						22. FZ-124.		
		Stil Desmption					2,0	to plezome		
		6)	5.5				ATED AT 2	Spring is		
			Emestent seam at 65.0			shdb at 79.75	BORUNG TERMINATED AT 20,0	Boning 8-124 was convened into pleasineser FZ-124,		
		e ii e	Enesa	-	-	2) die	BORD	Bonny		
	1: -	To School			 		_	<u>_</u>		
	S.	Sample (blows/ Content Typo 7.1) (%)	ccae	CORE	CORE	-				
		Sevation ci Tap St	397.5	332.5 C	387.5 C					,
				ł				 ,		
	Sample	Depth nple interval nper (h-tgs)	17 65,0-70,0	18 70.0-75.0	19 75.0480.0				**	
		Boverale Sample Number Mumber	5-12-2	B-124 1	43.4	6-12-	E-124	#:12*	-	
		8 2	13)	.al	6	ٺ	ei .	iti		

Depth Elevation of (120 S (122) S (122		Consolication Cc., Cc., O', (3st)
20-3.5 442.9 SS 4 7.2	Adending Limids Pariotic Size Arabysis Dry Musis UCS r UU / CU Confidence Consolication Li Pit Pi Li USCS RW RM RM RM RM RM RM RM	Ct, o', (pst)
2.0-3.5 452.9 55 4	(KR) (DRG) (C(RR) (DRG)	
3 4.0-5.5 4£0,3 SS 6		
4 8.07.5 488.9 SS 8		
5 3.0-5.5 456.9 5S 6 20.0	55 18 37 0.05	
Film, arown, 1st CLAY (CH3), Exce cand, maint		
6 12,5-15,0 451.5 SH 25.5 Firm trial How, iran OLAY (QL), trace sand, most	37 15 22 0.59 98 6 734.2 700	
- Ere graven at 4.5		0.01
Hara, 579, Nat CLAY (CH), staley, motet		
7 12.5-20.0 445.4 SS Relução		
8 23.5-25.0 441.4 SS Rehisal		
9 25.0-30.0 <39.8 CORE Weatherd, 979, SAIDSTONE INC SHALE, BUSTNOWN	Bernan	
25.5-	7207. 138.3	A 18.08 (A)
2E.O. 12.8	123.0 138.7 8 FEF	B SEOR AN
10 30.0-11.0 434.9 CORE		(A) man-
11 35.5-40.0 425.5 CORE 12.0	4.5 57.1 38.4	
12 40.045.0 424.9 CORE		
13 45.0-50.0 412.5 CORE Weathered, pay, S1.15TCNE		
14 50.0-55.0 414.5 CORE		
אפלטיים איזיי פויאינק (פיסיים), פואינק יוראפטיים איזיים איזיים איזיים איזיים איזיים איזיים איזיים איזיים איזיים	NAC	
15 55,0-50,0 405,9 CORE Smeature count at 55,0"		
16 60.045.0 404.9 CCRE crasp x 664"		
17 65.0-70.0 339.5 CORE		
18 70.0.75 c 394.9 CORE!		
.9 75.0-50.0 385.9 CORE very among at 75.0"		
Colder Associates	Project CITY OF ARLINGTON LANDFILL Location: Arlington Texas	GTON LANDFILL

	C Confining Presence (Entraction) (1954) (1954) (1954) (1955) (1955) (1955)				Project CITY OF ARLINGTON LANDFILL Lotation: Arlington, Texas
ncesturia					
Set Describion		BORNG TEKNIKATED AT BI.D.			
Sample Spri Serien Spri Dept. Bergien Valo Mesture	38,3				Associates

	Permeability	(amsec)							T	T	T	1	T	T	T	7	T	T	T	T	T	T	T			
	a	(o, (pst)		1	7	\dashv	+	+	\dagger	+	\dagger	十	\dagger	+	\dagger	+	+	+	+	+	+	+	+			
	ation	Cr,			1	-	\dagger	+	\dagger	\dagger	\dagger	\dagger	\dagger	\dagger	\dagger	\dagger	\dagger	\dagger	+	\dagger	+	+	\dagger	1		Project: CITY OF ARLINGTON LANDFILL Location: Adington, Texas
	Consolidation	ਤ	\neg	\dashv	1	\dagger	+	\dagger	\dagger	1	\dagger	\dagger	\dagger	╁	+	\dagger	+	\dagger	\dagger	\dagger	\vdash	\dagger	1			GTON [
		Type	1	\dashv	7	\dagger	7	\dagger	\dagger	\dagger	T	\dagger	\dagger	\dagger	╁	\dagger	\dagger	\dagger	\dagger	╁	\dagger	\dagger	╁	-		ARLIN
	antining	(psd)	1		1		1	-	\dagger	1	-	1	T	\dagger	1-	\dagger	t	+	\dagger	\dagger	+	T	-			OTTY OF
		(5ap).¢	1	1			1	-	T	\dagger	\dagger	T	T	\dagger	\dagger	T	t	T	\dagger	T	f	t	 			Project: CITY OF ARLING: Location: Adington, Texas
	UCS / UU / CU Triaxial	ح (ادی) ﴿ (مِدة)			1	-	1		1	\dagger	1	-	\dagger	\dagger	T	╁	T	T	T	1	\dagger	\dagger	T		L_l	- A)
	1 1 =	(630)	1		T		\dagger	T		T	1	\dagger	1	<u> </u>	T	\dagger	T	T	T	T	 	\dagger	T			
	S. S.	£	1	1	1				T	T	Ť	1				l^-		T	\mid	1	T	T	I			
ıρ	Maist						1	Ī		T		T			Ī	T		-	Ť			T	l			
ESULT	5.0			1	1		1			1	1		1	T	-	T	T	1	\vdash	-	T	T	-			
ESTRI		Ē	\dagger	\dagger	\dagger	-	\dagger	T	T	\dagger	\dagger	†-	-	T		\vdash	\vdash	-	\vdash	-	-	\vdash	-			
JRY T	Particle Size Analysis	<u>8</u>	+	+	╁	+	+	+	-	+	+	\vdash	-	 	-	-	\vdash	-	-	-	\vdash	\vdash	-			
ORAT	Grave!	ŝ	\parallel	\dagger	1	1	1	T	\dagger	\dagger	T	T	 	-	-	-		\vdash	-	-		┢	-			
D LAB		SSS										Lin.														
TAAN	g g	ā				-		-	25.00	\vdash	-	15 -0.48	\vdash	-	_		-	-	-	-	-	-				
OIL DA	1 1	ا ا	+	+	╁	+	-	-	8	-	-	8	F	_								-				
Y OF St		7	i		T	T				\mid			erad,						-							
SUMMARY OF SOIL DATA AND LABORATORY TEST RESULTS		The State (CS) (CS) CARRY THE CARRY			/4				TV.			rdings	Media spaig to pring, Ephloson, Slitstone, sighty wearnerd, limitated with scale		1								2-126.			
	Soi Description	the state of the s			byen of a				(Nir.), shaiy, molet			(CL), with samd partings	n, Sil.757		y weathere		cathared	ia ia			75,05 bnd		ezomete: P			
	Soil	Mark brown			Degraded TRASH with occasional layers of ctty			20	St.T (AIF)			LAY (CL), v	p. Eght brow		Sreng, dur brann, SHALE, sögsög weathered		Kediun stonz, gizy, SHALE, unwezüberd	occessional sundatene seams at 50,0"			seams of Imestone potween 75,0 and 80,0	3 AT 80.0"	Baring 8-126 was convened into piezometer PZ-126.			
		ark and rec		50.00	TASH ME			pard at 14.	pray, elaste			ray, lean C	no go paran ch stala		Brown, SH		ng, gray. S	andatene s			estone pot	PHINATE	Was some			
		Compact dark and reduces		Draken glass at 3.0	Degraded			with cleyey cand at 14,0°	Haro, c'ark gray, elaste Sil.T			Haid, Gall, gray, lean CLAY.	Medium spramon		Sreng, dar		fedign str	crecional 1			eams of la	BORING TERMINATED AT	laring 8-12		_	
	Serrical Reserved Sample (blows Context Toos	5.0	1	Ī					19.3	25.1	13.7	12.7 T	- S-21									61	81			
	SPT N Value (blows/	72	2		ru .	F1	61	CI	R	Refusal	Refusal	Refusal	Refusal													Golder
	Sample	83	SS		8	SS	SS	SS	B	SS	SS	SS	8	CORE	cose	CORE	CORE	CORE	CORE	CORE	CORE					lder
	Eevalion of Top	465.3	463,3		461.3	459.3	457.3	451.3	4453	441.3	426.3	4323	428.3	424.5	420.3	415.3	416.3	-05.3	400.3	255.3	350,3				-	GO
	at S		2,0-3,5		4,0-5,5	6.0-7.5	8,0-9.5	14,0-15,5	19.C-20.5	24,0-25.5	29.0-30.6	33,523,53	39.0-23.5	40,5~5.0	45.0-50.0	50,0-55,0	55,0-50.0	60.0-55.0	85:0-70.0	70,6-75,0	75.0-30.0		•			
	Sample Del	-	5		5	7	-	5	5 15	7 24		- R - or	10 39	11 40	12 45	- Et	14 55	15 50	18	71	13 75					
1	Serenote B	6.13 81.13	5.136	9-172ë	8:128	3-25	3-:26	5-129	3.126	F 130	6-126	9-126	921-9	21 A	821.4	3-125	3-126	8-123	321-3	8-128	8-126	B-126	か 記 2			ĺ

	o in the second		-	100	1	_	SUMMARY OF (SUMMARY OF SOIL DATA AND LABORATORY TEST RESULTS	ABORATORY	TESTR	ESUL.	<u>မ</u> ွ								
	Service Control	١-	Т	P 25					Particle St	Particle Star Analysis				September 17 (17)	Televitet	}				
Berehote St Number Nu	Sample Interval Number (fl-bgs)	al Elevation (f)	5 A	nplo (blo.	Samplo (blows/ Content Type 11) (%)	7	Sol Description	Attended 1	S	Si Ciay	Ust w	Moist Unit w	1 2		1 1	Canfiring	ŏ	Consolidation		Permeability
E-125	1 0.0-1.5	455.3		28	-	Very saff to frm, redust and most	יי ופלמבו בהס אבון בכייה, ופנה בנחבץ כו אל (כו), מיבומץ	1 NSC3	£	<u>E</u>	8	g	(tos)	(pst) c (pst	c' (pst) 6' (deg)	1 1	Type Q	3	(jsd) *, p	(aursec)
3428	2 2.0-3,5	1.5 461.3		88	36	1						1	+	+		\dashv	-		,	
2-126			_			Tash at 3.0			-			1	+	+		1	-			
3.126	3 4.0.5,5	.5 459,B	-	88	-				-			1	-	-		\dashv	+			
B-12*	5.0-7.5	.5 457.3		SS	30.1		Very Jose is bose, redeen brown, cayer SAND (SCI), wet		-			\dagger	+	\dashv	7	\dashv	\dashv	_		
E:-3	5 8,0-9.5	15 355.5		SS	15.3		Son, brann way an CLAY (CL), make	33 20 13 205	2.1 36.7	600		+	+	-	1	+	1	_		
9-130			-	-	-	בן 9.5 א האיסיל אינגם	5			3		\parallel	+	+		\dagger	\dashv			
3-124	6 14.0-15.5	5.5 449.8	 -	SS	23.3	7						\top	\parallel	+		+	1	-		
9-3E	7 19.0-20,5	0,5 444.5		83	-	figure 21,19.0°			-			\dagger	+	+	1	+	+	-		
8-132	•		_	ļ		Imestena fragments et 20,0"	tab 110.0						-	-		\dagger	+			
9-126	3 24,0-25.5	5.5 439.8		SS Refusal	13.2		השום, קשול היום בוצא (כאי) אושא, הסוצו	50 28 22 -0.55				-	+	+		+	+	-	1	
स्रान्त	9 29.0-30.5	0.5 434.8	SS	S Refusal	র						T	\dagger	-	+		+	-	1		T
B-128	10 50.5-35.0	5.0 433.3	CCRE	y	-							\dagger	-	-		+	+	-	1	
B-12K						Medium strong :	Mechin stong, cuit gray, sultstone		-		1	\dagger	+	-		+	-		-	
3-128	11 35.0-40.0	0.0	CORE	35	Ē	1	Wedism strong, Egit brown, fine grained, SANDSTONE, righty weathered				107.7	121.8	-	\downarrow		1	+	-	+	
3.178						Hard, care gray,	לאות כמות קראי, לא כוראי (בירון, ג'אהי)				T	T	+	-		+	+	1	+	4. TE-O4 (h)
37:26	12 46.0-45.0	S.C 423.8	CORE	w							T	-	╬	+		- -	+	+		T
8-128	-					Week gray, SHJ	Werk gry, SHALE, sighly weathered			<u> </u>		\vdash	-	-		+-	+		ŀ	
8-126	13 45,5-50.0	0.0 418.3	CORE	E.		10.24 le meat anothines	at 45.0°					1	-	+		+	+			T
B-+2E	14 30.0-55.0	5.0 413.8	CORE	ri Fi						<u> </u>		T	1	+		-	-		1	T
B-13E				_		Strong, Agitt gray	Strong, Agit, gray, LineSTONE, unweathered				T	\dagger	+	-		-	- -	1	1	T
B-126	، سند					BORING TERM	BORING TERMINATED AT 55.0			T	1	T	+	-		-	+	-	+	T
									-			1	-	-			-		-	
	N. Control	12																		
	U	Associates		Aire	T.A.										Project Location:	Project CITY OF ARLING Location: Adington, Texas	ARLINGT	Project CITY OF ARLINGTON LANDFILL Location: Adington, Texas	11.	
			ĺ				**************************************													

Sample N N Dupit Elevation Vable Maxime No Interval of Top Sample Century	Elevation of Top	Sample (Charles An	SPT N N N N N N N N N N N N N N N N N N N	20	25	Soi Description	Atterberg Limits	Paris	S S	L	-		1 1	UCS/ UU/ CU Triaxiat	1 1	- Legis	ğ	Censolication		Meability
\$ 3. \$4.2	(10 Type 11) 74: 464.2 SS Refusa	Type 1t) (%;	Refund Nove Syn bown, lean sard	(%) Fixed, fight brown, lean sard	Hard, Eghi brown, lean sand	थ व्यस्प (वा.)	I PI PI USCS	Gravel Sang (%) (%)	# E	Clay Unitwo (%) (pcd)		Unit wi UCS - c. (ped) (test)	(psq)	c (ps)	(grag)	Pressure (pst) Ty	Type Cc.	धं	() (bsd)	(cm/sec)
CONCRETE	CONCRETE	CONCRETE	CONCRETE	CONCRETE	CONCRETE			1	-	-	+	+	+			+	+		\dagger	
2.1 Very stoff, readinh and yells dignay mass	2.1 Very stoff, readinh and yells dignay mass	-5 E.1 Very stift, readish and yellor signey, mater	-5 E.1 Very stift, readish and yellor signey, mater	Very stift, reddich and yellor digrafy maker	Very stiff, readiesh and yellowish alignary maker	אבא אכאין לכין, אבן כיונס אביים לימבא (מינה אימים לכיונה),	25 14 31 -0.19		-	-	-	-	-			-	+	+	+	
4.0-4.5 450.2 SS 32 TRASH	250.2 SS 32	ä	ä	TRASH	፲፻ራ፡፡				_	<u> </u>	-	-	-		\dagger	+	+	1	\dagger	
	458.2 SS								$\left\{ \cdot \right\}$	$\left \cdot \right $	\vdash				+	+	+		+	
	4512 SH 25.0	25.0	25.0			CLY with same (CL), modes	42 16 26 0.35		+	8	1007	125.8	ě		- -	-	+		\Box	
15,5-20.0 445.7 SS 15	+45.7 SS								-	-		-	-		-		-		+	
Campac, chycy SAMD win grau	Campact, dayey SAME with grav	Compact, dayey SAMD win grav	Compac, dayey SAME with grav	Compact, dayey SAND with 51N	Campac, dayey SAMD win grav	Save (SC)			-	-	-	-	-		\dagger	-	\downarrow		\dagger	
Haid, dai't çray, zai CLAY (CIH), analoy	Hard, dai't gray, ziz CLAY (CP), a	Haid, dail gray, fai CLAY (CH), a	Haid, daili gray, fai CLAY (CH), a	Hard, dark gray, far OLAY (CH), a	Hard, dark gray, far CLAY (CH), a	halon			-	-	-	-	_		T	+	+	-	+	
23.5-25.0 440.7 55 42 22.5	440.7 \$5 52	ŞI	ŞI	22.5			60 26 34 -0.10 CH	9.0	7.1 92	92.9	\vdash	-	_		-	+		1	+	
28.5-30.0 435.7 SS Refused	435.7 559	SS Rotuszi	Ratuszi							-	-	_			-	-	-		\vdash	
35.0-55.0 454.2 CORE! Waddum streng, ptpy, StUTSTONE, with seeings of sandy strate	-34.2 CORE			ארביביות , עבינ, במסיני העוליביות	Madum strong, syct, SILTSTONE	with sextors of sandy shale				-	_		_		-	-	-		-	
35 5-40.0 429.2 [CORE]	429.2	CORE	217							_		_			-		-	ļ-	\vdash	
40.5-45.0 424.2 CORE	434,2	CORE	je)								<u> </u>	_	_			-	-		\vdash	
40.7-41.1		0.5	5.0	5.0						136.5		148.9 7.3			_	-	_		-	
45.0-30.0 415.2 CORE Medum strang gray, SANDSTO	415.2 CORE			Medium sveng, gray, SANDSTC	Medium sweng, gray, SANDSTO	Medum sveng, gray, SANDSTONE, nghy weathered, larinaled						-					-		-	
414.2 GORE	414.2 GORE			Weak gray, SHALE and SAND	Weak gray, SHALE and SAND	Weak gray, SHALE and SANDSTONE, FIRST Addrd, Wardered														
56,0-60,0 409,2 CORE	£,09.2	CONB	di.								\dashv									
60,0-55.0 402 CCRE	404.2 CORE										\dashv	-								
				Weak to medicate story, dark 9.	Weak to monerate strong, dark o	my, SHALE, algrely wearinged				_	_					-				
0 395.2 CORE	395.2 CORE	7	7					_	\dashv	-	\dashv	\dashv								
12.5	12.5	12.5	12.5						-	116.9		132.0	_		-					2.2E-08 (v)
70.0-75.0 394.2 CORE ====================================	394.2 CORE			52 ong at 70.0°	7.07 tr group						_									
750-80.5 385.2 CORE	385.2	CORE	134				-		_			-							-	
The state of the s														L_						$\ \ $
Golder.	Golder	lder			**									_J -	roject (ITY OF	RLINGT	Project CITY OF ARLINGTON LANDFILL	1	
de Associates	Associates	ociates	Ales												ocation:	Location: Adington, Texas	. Texas			
												!								

f.	Permeability (cm/sec)	1.7E-09 (n)			
		(bsd) . a			
	1 2 1	ď			Project CITY OF 3D! INCTON 1 Publica
	-	8			1000
	188	1 Apr			4000
	Confiring	isd)			t
	DU / CU Triaxcial CU	an) e			9
	UCS / UU / CU Traxeal	3			
	UCS-C, UU-C,	3			
	35		_		
SI	Maist Unit wt				
KESUL.	Unit W	116.1			
ESTF	Analysis R Clay				
ORY 1	Stavel Sand Sil. Clay				
ORAT	88				
D LAB	బ్జ				
TA AN					
JIL DA	Attemeng				
OF SC					
SUMMARY OF SOIL DATA AND LABORATORY TEST RESULTS					
SUMI	£				
	Sed Description				
	108		553 14 6		
			BANKO I BAGAINA ED AL SOE	ſ <u></u>	
Ì	oisture octient (%)	15.2	3		
	SPT N Nature (Kosture Sample (tlown) Coctent				
	Sample()				いっている。
	Elevation of Top (ft)			'	Ç
-	# F F	78.4			A House
	Sample Duptr ple interval	22	-	All All	
	San cle Sample et Number	-			
	Barende Number	9 13	This staught this thusbase testing proving and		_

emeability (cm/sec) 5.2E-04 (b) 4.7E-04 (v) Project CITY OF ARLINGTON LANGFILL Cenfining Consolidation
Pressure (psf) Type Cc., Cr. Consolidation Location: Adington, Texas c, (pst) | \$. (deg) UCS / UU / CU Triavial 3 3,8 UCS-C, Most Unit wa (p:r) 100 SUMMARY OF SOIL DATA AND LABORATORY TEST RESULTS (B) (F) (F) 1003 dE dE Sand Grave. PL PI U USCS 38 19 18 -0.56 12 -0,37 ю 23 Week Egit drong, SANDSTONE, win chy, stytby weathered Week Cank gray, SPALE, stytby weathered, with democracians reasone canno. Moderately strong, cark gray, SHALE, sandy, unweathered TRASH, with eccessional layers of candy cay, degraded strong, intersecided sandstone between 60.0' and 55.0' Dense, brown, the, well-graded GRAVEL (GW) Herd, Eght Grown, lean stay with sand (CL) sandtions seams between 45,0' and 50,0' Soft, שושית שונים לבו כולא (כאן, meiet Hard, dark gray, fat CLAY (Ch), shaley Stiff, provn. lean CLAY with sand (CL) bluesn gray, Imediane seam at 55,0" Streng, Fight gray, SANGSTONE Egride between 54.5° and 55.0° 11.5 3 123 r) 0.0 Associates ę ė 40 3 83 CORE CORE SS 22 H CORE CCRE H-150 12 40.0-45.0 424.E CORE 5-350 17 ES.C-70.0 335.6 CORE 18 70,0-75,0 354,5 CORE SS SS 425.6 CORE 409.6 CORE 6-100 16 60.0-65.0 c04.5 CCRE \$44.5 SS ,64.6 449.6 455.6 419.5 460.6 6.53 20-3.5 462,6 455.6 439,6 34.6 414,6 4.0-5,5 15.0-18.5 45.0-50.0 14 50.0-55.0 20.0-21.5 25,0-30.0 30,0-35,0 35.0-40.0 0.0-1.5 6,0-7,5 5.5-3.5 3 21.5-25.0 3-130 15 55.0-60.0 51.0 9 5. 00 m P-130 5 8-120 13 9-130 3-136 B-123 3-135 6,130 9-130 9-170 gr.135 9 P-12C 5.130 22.A S. 6-126 9-135 9-133 5-130

	UCS9 / UL / CU Triaxial Cu		Project: CITY OF ARLINGTON LANDFILL
	(ket)	- -	
JLTS	Matel Mr (p=2)		
ot RESI	Clay Unitwe (24)	-	
RY TES	Particle Sites Analysis (%) (%) (%) (%) (%) (%)		
ORATO	Partici		
10 LAB(SSS		
ATA AN	Attention Units		
SOIL D	11 11 12 12 12 12 12 12 12 12 12 12 12 1		
SUMMARY OF SOIL DATA AND LABORATORY TEST RESULTS	Soll Costopica Guk gay 11537 2071NG TERMINATED AT 84.0 Pandy B-120 was converted the picameter PE:120.		
	SPT N		
	SPT SPT Natural Value (5)Cox3 (2) (2) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4		ا د د استا
	Deration Sample (4) Type 228.6 CORE		Golder
			<u>ال</u>
	Sample Digital Interval Interv		
	0.3		
	Sarahole Number 5-130 8-130 8-130		

Day Major Consideration Day Conference		Sample		-	15	-			
1 0.14 0.15 0.1	and	mple Joten mber (4-by		no d	nple (bic)	Confe		Particle Size Aralysis	Permeability
2 24-25 454 28 28 2 10-20-40 April and brown supply etcay 2 14-24 454 455					52	_	Hard, 15th brown, sandy lat GLAY (GH), signby moist	(32) (33) (33) (34) (34) (34) (34) (34) (34	
1 4-64-5 467-5 553 55 5 7 7 7 7 7 7 7					ı,	_	TRASH, with layers of brown sancy fall casy		
4 567-5 563-6 528 5 2 2 2 2 2 2 2 2 2					<u> </u>				
1 10,014 41,4 52 5 5 5 5 5 5 5 5							Firm, brown, sandy loan CLAY (CL), mods		
1 15,000 25 25 25 25 25 25 25			<u></u>					13 22 034 CL 1,7 31,4	
1 12 12 12 12 12 12 12									
3 24.5626 24.65 25 Reliand Navi, and pay, 10.01/10.01, and on, rect. 1 15.5426 24.5526)Ç	28.5	į .	84	
10 23-5.20 2.62 28 71		-					Hard, dark gray, tat GLAY (CH), stratey, motes		
10 335-310 4-35 58 71						25			
10 33.536 431.5 55 346246						_			
12 26.540 478.5 SS Release	-;	_	L			- A			
12 40,048 43.4 CORE						20.			
13 50.0-510 2024 CORE Privat gray, Stride Gray Privat gray, Stride Gray Privat gray, Stride Gra		************		!					
14 50.0-54.0 1154 CORE					Ä E		Weak, gray, SILTSTONE, weathered		
15 52-5520 4114 CORE					55		Weak, gray, SHALE, sightly weamered		
15 52-520 471.4 CORE 10 10 10 10 10 10 10 10 10 10 10 10 10		,			_		with occasional scalins of sandstone at 53.0		
17 100-55 CORE BEOFUG TERNINATEDATISSAT					13,				
17 000-SEG CORE PORTION TEACHER PORTION TEAC		****			AE E				
Golder Associates					अह	- /	a-10-1-1-1		
,		-					פספעיס דבתאוואדבה אד 65.2"		
,									
,		T. C.							
		D	ASS	O. C.	eriate	Ø	·	Project CITY OF ARLINGTON LANDFILL Location: Adington, Texas	

		Perneability (crysec)						T			T	T	T	T	T	T	2.45E-08			-		
Company Comp		- A	(FE	-	\dashv	\dashv	-	+	+	+	+	+	+	+	+	+	14	+	+			
Chiefact		ion	1	\dashv	-	+	\dashv	+	+	+	+	+	+	+	+	-	+	+	+			
Company Comp		OKC.	-	-	-	\dagger	+	+	\dagger	+	+	-	+	+	╁	+	+	+	+			
Comparison Com		ţ		\dashv	+	\dagger	\dagger	+	+	+	+	+	\dagger	+	+	ł	+	-	H			
Second Processing Process	-	i		-	\dagger	+	\dagger	\dagger	\dagger	\dagger	\dagger	\dagger	-	+	-	\vdash	\vdash	+	H			
Comparison Com		1 ((G	+	\dagger	-	\dagger	+	\dagger	\dagger	\dagger	\dagger	┢	\dagger	\dagger	+	\vdash	-	H			
Secretary Secr		. S	(psd)	\dagger	\dagger	\dagger	\dagger	\dagger	\dagger	\dagger	\dagger	\dagger	\dagger	\dagger	-	\vdash	T	\vdash	H			L
Comparison				T	\dagger	\dagger	\dagger	\dagger	\dagger	\dagger	\dagger	\dagger	╁	-	H	-	\vdash	 -	H			
Company Comp		2, 83	(F)	\top	\dagger	+	\dagger	\dagger	\dagger	\dagger	-	╁	\dagger	╁	\dagger	-	\vdash	 	H			
Standard Programme	1	Mossi Fitwi	(g)	\dagger	\dagger	\dagger	1	\dagger	+	\dagger	-	\dagger	+	\vdash	\dagger	-	62.6	-	H			
Semple Page	-			+	+	+	+	\dagger	+	+	1	╫	+	+	+		┼	-				
Sample Permatical Name March	liveire			+	+	+	\dagger	+	+	+	-	+	-	-	\vdash	-	12	-	\blacksquare			
Sample December Communication Communic	P. Cra do	S. C.	-	- -	- -	- -	+	-	+	-	-	-	-	L		_	<u> </u>					
Sample Decouration Raman	Partie	avel Sa	-	+	+	-	+	+	+	+	╁	-	-	 	_	_	_	-				
Sample S	-	SUS		+	+	\dagger	-	+	1	\dagger	<u> </u>	T	\vdash	-		ļ						
Sample Supple S		ing Umits		-	1	-	#	-	#	1	T	1	-									
Sample Sample Sept Sep		ž 2		1			_															
Sample Revealed Sample Particle No.	F	=	-	-	+	╁	-	-	\vdash	-	-	-	-	-								
Sumple Deeplin Sumple Office Sumple Office Sumple Office Sumple Office O		Soil Description	סבם סות סבים שונים	rown, CLAY, and fight brown, scare SAND	d, with Jose to compact dayey sand at 4.6"	wn and gray, say SAND and sandy sit, with clay, any	iay, SHALE algorby mode	THE PROPERTY OF THE PROPERTY O	fre sand, wel at 19.0	.01	A STATE OF THE PARTY AND A STATE OF THE PARTY			X'0>	it gray, with fine sand lenses and dayry cend of 45,00	d, gray and dark gray at 50.0°			erminated at 60,0°			
Sample Bevealed (17-10) (17-10			GRAVELI	Very zalf,	1 Dez yes2	Ourse, br	Very saff,	_	some gray	ashdy at 2				cark gray 3	opus kast	umouten.	, ¥.		BORING Y			
Sample Departs of Trap Number (N-294) (1) (1) (1) (1) (2) (2) (1) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2		483		14	9:	37	-	87	S.													
Sample Departs of Trap Number (N-294) (1) (1) (1) (1) (2) (2) (1) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	195	Oute Meister Outs Control			}	ļ	-			CORE	CORE	CORE	CORE	CCRE	CORE	SORE		CORE	\dashv			
Sample Sample (Reset) Number (Reset)	Fig.	Sample (blows/ Constru Type 1f) (30)		SS	S				2									1				
la de constant de	Ld.	Sevation Value Motistul of Top Sample (blows/ Conta) (ii) Type 1 ii) (7k)			 	474.5		459.5	ŝ	49	₹	٠,	.,.									Aller
		Eevation of Top (ft)		453.0	475.5	 											45	,	.]			
		Depth Eevation Interval of Top (R-5ge) (ft)		453.0	475.5	 	•								•		53.3		-			No.

LCS/(10) CUTS-mal	Confines Confines Fresture	(951), C'(p.51) \$ \(\delta\) \(\delta\																								3.518.07		Project: Rentible (Adjornn andil Darme a mandinane)	XX
	Moist Unit w				<u> </u>	_	1	_	_	L		_														140.3			
	<u>کون</u> در کون					_	L		_	L	<u> </u>															126.9			
Parode Stra Analysis	Set Clay	(£)																											
Particle St.	Gravel Sand Stit	Œ.																											
-	G.a.v	£ S		_		-	-	-	-	-	-	-	_														_		
	Limits 1.1 Lines	ti uscs					_		-		_														_				
	25 1	ير د				_	-	-	-		_	_														_	_		
		-	_			-	 	<u> </u>	-		_														_				
	Sci Description		יינילאק יכו פוניאיסבר	Soft, dark gray, CLAY	Rea and Brown, Sandy, city. GLAY, moist	Compass, ange and travn, dayey fine SAND, was some year motifed,			Very Censer, orange and brown, sampy SET, any	Very hara, yellew and brown, SAND, some sit, wer		יופא פגוון ה חשים, לגוון אונון		ದೀನಕ್ಕು ಭಾಗ್ಯ ಚಿಕ್ಕಾರದಿ. ಗಾರಕಣ			בארא (איסים אחד לכים, ראיסים בים ליה לכים, ראיסים)	ğığı gray al 23.5;		אנים וג אָרים אונז לילים! וג אָרים אונז	,एक राज्ये म तहरा	slakersided 11 IS.I	with small fine search legisk at 38.25's	ינים) או אונה אמהה המשנה ארפים אעם אונים, אונים אעם בעול	unweithered at 45.0		ВОЛИЯ ТЕЯЛИКТЕР АТ 50.0"		
		T																			,					10.5			
_	Maksure Cantent (%)	č.		ſ			83	17			8		ន		ŝ	111			10		161						_		Afes
Tes l	Velue Moisture 16 (plows) Canterd 1 th (55)	8.		۲				1 00	ı		SS		SS		- SS	7 CCRE			CORE		COSE			CORE	CORE /			:	old Cide
Tegs 1	Sample (olows) Context	K) Art act.	1	35			3	3	-		١. ١	,			F~.				491.7		436.7	l		-51.7	445.7			1	50
Ld9	Elevation of Tap	e -	1				457.7 555	.82.7 S			[.ms		7.57.		167.7	166.7													
-	Depth Elevation (frebas)	(u) (sga-y;	1	35					,	-	T. 177.7		1.574		. 167	- 466					•	`	,		•	45. ?			Colder Associates
Samue	var Elevation	Sumace (reags) (n)	1	491.2 85			457.7	482.7	3	,													, , , , , , , , , , , ,	p1	•	7.55	-		

"	Sample		_	THS		SUMMARY OF SOIL DATA AND LABORATORY TEST RESULTS		Particle Size Analysis	sis	-		1111/531	1808 (1911 (1911) Emodel		-			-	
Borencle Sample Number (Number	Depth interval (11-094)	of Top (f.)	Sample	Vatue (Diows/ 1.5)	Sample (blows/ Content Type 1:5) (%)	Sail Description	Atterberg Limits Grav PL Pt U USCS (%)	Sand Sit Clay (%) (%) (%)	5 5 S	Moist Unit wit	UCS - C U	100	CO CO	Contring		Consolidation	. 1	e g	Permeability (cm/sec)
						Brown and light brown, sky SAND, with gravel, dry			-					(K	13/16	3	5	0 , (pxt)	
		472.8	SS	'n		Frm to stiff trown, CLAY		-	-	-	+	+	+	+	\prod		1	+	
	-	465.3	뚱			Leoze, Schill, and pray day, moist		-	-	-	1	+	+	-			+	+	
	•	464.3	15			Stiff, brown and igni brown, CLAY, trace sal most			+	-	1	+	+	+				+	
		455.3	Ŧ,			Selft, gray and fignt gray, sancy GLAY, mosk			-	-	-	╁	+	-			\dagger	+	
ann sia		454.3	***			very stiff, wace fine cand and silt at 19.0'			_	1		\dagger	-	_	\prod		+	+	
	,	449.3	<i>₹</i>			still, gray and dark gray at 24.0°			-	-	-	+	+	\perp	1		+	+	
	,	1413	ŦS.	_	L			-	-	1		+	-	1	1	$ brack { brack}$	\uparrow	+	
		435.3	35			בדוק שתם ליניים שו 14.0			-	L		+	+	-	1		+	+	
						Wan locks, anzesian brown, SAND, wet			_	_	_	+	-	-			I	+	
	,	575	ß	m		Very isase, adyry Sand, wat		_	_	_		-	-	_			\dagger	+	
F-11.3		429.3	S	,-		Very boare, gray, dayer stry SAND, wet			_	_		\vdash	-	_			+	+	
		424.3	33	ğ		Salf, gray and brawn, CLAY, with sand and sit, wet		_	ļ	_		\vdash	-	-			1	+	
										_	-	\vdash	-	L			\dagger	-	
		422.8	CORE			Nu secovery			_	_		-	-	_			-	+	
		418,3	CORE							_		\vdash	\vdash	-			f	-	
		413.3	g	ııı		Very bose, trown, the SAPD, wed		_	<u></u>	_		-	-			1	\vdash	-	
		102.3	\$\$	37		عوبود بنز وي ي.		_	_	_		-		<u> </u>		T	\vdash	-	
	٠	400.3	SS	th .		base 2: 70.0°							_				 	-	
	•					Gravn, gemented, SANDSTONE				_	-	_		_			-	-	
	,	398.3	CORE							_		-	_	-			_	-	
	·	393.3	CORE			Gray, SHALE, with small lenses of fine sand			_			_		_			-	-	
9-113						trace fine cand at 122.5				_		-	_	_			-	-	
E:13	-	388.3	CORE	- 133		creeathored at 35.0.						-		<u> </u>		<u> </u>	\vdash	1	
£ :: 4	9.56	383.3	CORE		12.4				121.8	137.0		H	H	Ш				1.2	1.25E-07
		4											L						
		Golder	Mde	3el									P. P. P.	Repli	Project: Republic / Arlington Landfill Permit Amendment /	ngtonLa	ndfill Pem	ir Ameno	dment /
						_													

SUMMARY OF SOIL DATA AND LABORATORY TEST RESULTS Parities Size Analysis UCS/101/CU Transa	Dry Moist Unit wt UCS- c, U (pcf) (34)		Project Republic / Adington Landfill Permit Amendment /	×
it of the state of	Bestehate Sample Elecation Classic Cla		Golder Golder	Associates

Earlier Size Analysis Earlier Size Earlier Earlie	UCS/VUI/CU Thaxia	Consolian	UU - C Confining Pressure	(pst) (c'(pst) 4' (deg) (pzt) Type Cc, Cr, cr, (pst)																									9.585-09			Project Republic / Arlington Landfill Permit Amendment /
Soil Description Lie Promise See Aradylas Day Comparing Promise See Aradylas Day Comparing Soil Description Lie Princip See Aradylas Day D	_	Ţ	A UCS-r	(kgt)		-	-	_	-	_				-	-	_	-								_							
Sept Description Care Particle Sept Analysis Particle Sept Analysis Care C	_					-	1	_	-					-	_	_	-	_														
Sof Description LL PL PL ID LUSCO (OR) U. Sof. D. Av. 19 Lin Lusco (OR) U. P. Lusco (OR) U. P. Lusco (OR) U. P. Lusco (OR)	1			-		1	+	_	-	_			_	_	_	_	_	_	_	_									54.5			
Sof Description LL PL PL ID LUSCO (OR) U. Sof. D. Av. 19 Lin Lusco (OR) U. P. Lusco (OR) U. P. Lusco (OR) U. P. Lusco (OR)	Size Arziya		£ 3	8		L	_																									
Sof Description LL PL PL II LISCS 19, 1979, CLAV III,	Particle (-	vel Sand	(2)	· -	-	+		-	4			_	-	_	_	_	ļ														
Bot Description L. P. P. D. U. P. P. U. P. P. U. P. P. D. U. P. P. D. U. P. P. U. P.		<u>L</u>	2 S	()		-	+	+	+	+	-			-	 	-	_										سست					
Sof Description By 20's, CAND, with 1th and gravel (reachase) By 20's, CLAN Fit brown and gray, metica as 4 of fit brown and gray, metica by 4 of fit brown and gray, metical, brown savel, wet fit brown, savely CLAN, in drays savel, wet for broze, gray, all 54.0° for broze, gray, all 54.0° for broze, gray, with gravel, wel for broze, gray, all 5 savely CLAN, in drays savel, wet for broze, gray, all 5 savely CLAN, in drays savel, wet for broze, gray, all 5 savely CLAN, in drays savel, wet for broze, gray, all 5 savely CLAN, in drays savel, wet for broze, gray, and SALO. For brown, emerced, SANDSTONE For brown, gray, CAND, well for brown the gray, meteral state for brown, gray, CAND, well for brown the gray, meteral state for brown, gray, CAND, well for gray, Gray, CAND, W		arg Limits	1 2 2	3		 -	+	_	1	1								_								_						
Sol Description But gray, GAND, with all and gravel fronthases But dark gray at SAD. The bases, gray, medica at A O The bases, gray, and gravel, we can be seen and and at 14.07 The bases, gray, at SAD. The gray at SAD. The gray, sandy CLAN, in drayy sand, we can be seen and we can be seen and we can be seen at SAD. The gray, SAND, we can be those at SAD. The gray, SAND, we can be those at SAD. The gray, SAND, we can be those at SAD. The gray, SAND, we can be those at SAD.		Attent	1.0	2			1	+	1	1		_		_																		
Eligibor, Schill, with the bing all gots, CLAY Eliftorm and gots, meite a situation of the bing and the bing gots, and the bing and the bing gots, and the gots and the bing gots, and the gots, and th			_[=	1		-				-							-															
					Brown, SAMD, with sit and gravel (roadbase)	Self. gray, CLAY	afift, brown and cray, main as 4 G						अस्तु द्रशीत वर् 28,0°				רווה, אופן של 48.0'		تا 64 هردي جمعة المادة		Very bossa, 570 y, sanity CLAY, to dayrry sand, wet	Loose, gray, sliy SAAD. with gravel, wel	סטויס אל זון 14.0	fine, gray, SAND, wet	Light brown, cemented, SANDSTONE	Gray And Calk gray, unweathered, SHALE		spee fire and leases at 85.0'		Borng terrenato at 100,0	· · · · · · · · · · · · · · · · · · ·	
	F.S	Vziue	(Nama)				ļ	_	-	_ _	_	_									г	4	17	83	113	til.		ni lu				i
SS 20 11:3 20		я я	Samp	-			╁	╁	- -		-	SH.	SH SH		SH	SH	ir.		SH.		35 5	83	SS .									7
S S S S S S S S S S S S S S S S S S S	į i	Į,		-	473.8		459.8	1.5	\$		3	1.5.1	444.8	435.2	165	429.E	434.B		419.8	414.3	405.8	SCC.B	3.55.8	384.5	393.6	358.5	383.3	372.5		_		
SFR	1 1		77 ~	;	,	,	,			_	•					٠				,		•	٠	٠		,	٠	•	55,5-		The state of the s	
Chestal Ches		Septh	Man (H.)																													
20000000000000000000000000000000000000		Depth	Sample	-			-		+		-																	1				

City of Arlington Landfill MSW Permit No. 358B Part III, Attachment 4 Geology Report

GRADATION TEST RESULTS

City of Arlington Landfill MSW Permit No. 358B Part III, Attachment 4 Geology Report

HYDRAULIC CONDUCTIVITY TEST RESULTS

				AIN SIZE A 7, D 1140, 0				
			, .,	7, 10 12 70,	2 117, 12 12	2,0100		
PROJECT TITLE		Arlington Landfi	ili	SAMPLE ID S-2			S-2	_
PROJECT NO.		093-94479		SAMPLE TYPE				nold
REMARKS				1		E DEPTH		-
				Hygroscopic N	Aoisture For Si			
WATER CONTENT	(Delivered Mo	lsture)				Wet Soil &	Tare (gm)	
Wt Wet Soil & Tare (g	Wt Wet Soil & Tare (gm) (w1)			1		Dry Soil &	l'arc (gm)	
Wt Dry Soil & Tare (gr	n)	(w2)		1		Tare Weight	(gm)	,
Weight of Ture (gm)		(w3)		1		Moisture Co	intent (%)	
Weight of Water (gm)		(w4-w1-w2)		Total Weight	Of Sample Use			roscopic Moisture
Weight of Dry Soil (gn	1)	(w5=w2-w3)		1.	•	Weight Of S		157.40
Moisture Content (%)		(w4/w5)*100		1		Tare Weigh	t (gm)	8.41
				1	(W6)	Total Dry W		148.99
								<u> </u>
SIEVE ANALYSIS				Cumulative				
Tare Weight	1	Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE		
8.41		+Tare	,	{(wt ret/wh)*100]	(100-%ret)			
	12.0"	8.41	0.00	0.00	100.00	12.04	cobbles	
	3.0"	8.41	0.00	0,00	100,00	3.0"	coarse gravel	
	2.5"	8.41	0.00	0.00	100.00	2.5"	coarse gravel	
	2.0"	8.41	0.00	0.00	100.00	2.0"	coarse gravel	
	1.5"	8.41	0.00	0.00	100.00	1,5"	coarse gravel	
	1.0"	8.41	0.00	0.00	100.00	1.0"	course gravel	
	0.75"	8.41	0.00	0.00	100.00	0.75"	fine gravel	
	0.50"	8,41	0.00	0,00	100.00	0.50"	fine gravel	
	0.375"	8.41	0.00	0.00	100,00	0.375"	fine gravel	
	#4	8.41	0.00	0.00	100,00	#4	conrse sand	
	#10	13.13	4.72	3.17	96.83	#10	medium sand	
	#20	15.65	7.24	4.86	95.14	#20	medium sand	
	#40	19.77	11.36	7.62	92.38	#40	fine sand	
	#60	26.55	18.14	12.18	87.82	#60	fine sund	
	#100	37.29	28.88	19.38	80.62	#100	fine sand	
	#200	46.26	37.85	25.40	74.60	#200	fines	
% COBBLES	PAN	T				PAN		
% CORBLES % C GRAVEL	0.00	13	tina Thamas	~ 1001	earth, and a second			
% F GRAVEL	0.00	1 .	tive Terms		istly coarse (c)		• •	[
% C SAND	0.00	little	0 to 5%		ostly medium (r	11)	LL	52
% M SAND	3.17 4.46	little	5 to 12% 12 to 30%	< 10% fir			PL	21
% F SAND	17,78	some			arse (m-f)	>	PI C-	31
% FINES	74,60	and	30 to 50%		arse and fine (r	•	Gs	
% TOTAL	100.00				arse and mediu			
70 10170	100.00	·I		~ 10% Cd	ual amounts ca	Ctt (C-1)		
DE	SCRIPTION	Dark gray, C1.	AY with sand					
	HDZZO	631	· · · · · · · · · · · · · · · · · · ·				Perfect STATE	
	USCS	<u>C11</u>					TECH	MR
							DATE	06/21/2010
							CHECK	SBK

City of Arlington Landfill MSW Permit No. 358B Part III, Attachment 4 Geology Report

UNCONFINED COMPRESSIVE STRENGTH TEST RESULTS

	UNCONFI	NED COMP		STRENGTI TM D 7012-07			CORE SPECIMENS	
PROJECT T	TTIE	PEPUBLICISON	BORING PLANTX	ľ	SAMPLE ID		B-101, C-9	
PROJECT N			94479		SAMPLE TY			
	w.	9735	74477	^			Core	
REMARKS		<u> </u>			SAMPLE DE	rin	25.0 - 26.0'	
SAMPLE DA	ATA			WATER CO	NTENT	BEFORE		AFTER
leight (in)		3.280				SHEAR		SHEAR
Diameter (in)		1.877				(entire)		(partial)
Height/Diametr	er Ratio	1.75		Tare No.		-	T	
Arca (in²)		2.77		Wt. Wet Soil &	Tare (gm)	316.26	1 F	323.47
Volume (ft ³)		0.0053		Wt. Dry Soil &		278,45	1	285.79
Weight (gm)		316.24		Wt. Tare (gm)	(0111)	0.00	†	8.28
Wet Density (p	nf)	132.68		Wt. Moisture (g	ım)		† -	
त प	*					37.81	-	37.68
Dry Density (p		116.82		Wt. Dry Soil (gr	m)	278,45	-	277.51
Machine Speed		0.016		Moisture (%)		13.58%	J L	13.58%
Strain rate (%/1		0,49						
TIME	DEFLECT	FORCE	% STRAIN	Ac		IVE STRESS	_	
(min)	(inch)	(lbs)	(in/in)	(in¹)	(psf)	(psi)	4	
0.0	0,000	0.0	0.00	2.77	0.0	0.0	4	
0.1	0.002	10.5	0.06 0.12	2.77	546,1 628,9	3.8 4.4	-{	
0,2	0.006	12.9	0.12	2.77	670.1	4.7	-	
0.5	0.009	13.7	0.27	2.77	711.0	4.9	TIME TO FAILURE (min)	6.6
0.6	0.010	13.7	0.30	2.78	710.8	4.9	STRAIN @ FAILURE (%)	3.2
0,8	0.013	16.1	0.40	2.78	834.5	5.8	-l.	ong. Splittin
0,9	0.015	17.7	0.46	2.78	916.9	6,4	- I	·····
1.1	0.017	20.9	0.52	2.78	1082.0	7.5		
1.2	0.019	24.2	0.58	2,78	1252.1	8.7]	
1.3	0.021	27.4	0.64	2.78	1416.8	9.8	<u>.</u>	
1.4	0.023	29.8	0.70	2.79	1539.9	10.7	FAILURE	
1.6	0.025	33,0	0.76	2.79	1704.3	11.8	SKETCH	
1.7	0.027	37.1 45.9	0.82 1.16	2.79 2.80	1914.8 2361.0	13.3	4 \ (
3.0	0.038	70,1	1,49	2.81	3593.6	25.0	1 1 1 1	
3.7	0.059	96.7	1,80	2.82	4941.8	34.3	4 1 1 1	
4.4	0.070	121,6	2.13	2.83	6193.1	43,0	1	ľ
5.0	0.081	142.6	2.47	2.84	7237.8	50.3	1	
5.7	0.091	160.3	2,77	2.85	8110.7	56,3	1 1	
6.6	0,106	162.7	3.23	2.86	8193.4	56,9	1	
7,4	0.118	147,4	3,60	2.87	7394.9	51.4		
7.9	0.127	111.1	3.87	2.88	.5557.9	38.6		
8.5	0.137	78.9	4.18	2,89	3934.5	27.3		_
		UNCONFINI	ED COMPRESSI	VE STRENGTH	8193,4	56.9]	
			SHE	AR STRENGTH	4096.7	28.4		
Descrintion	Gray SANDS	TONE			LL		1	e.
	1				PL		TECH	DA
						 	┪ ├─	
	-	T			Pi	<u> </u>	DATE	8/5/10
USCS	<u> </u>	J					CHECK	DA
				*			REVIEW	AK

1	ESCRIPTION	LL	PL	Pl	SAMPLE ID
Gray SANDSTON	E	-	*	-	B-101, C-9
		SAMPL	E TYPE	Core	25.0 - 26,01
USCS		 *			

Note: Non-ASTM due to the length of the sample received.

Specimen contained several horizontal fractures prior to shearing.

SAMPLE DATA

Wet Density (pcf)
Dry Density (pcf)
Maisture Content

132.7
116.8
13.6%

TIME TO FAILURE (min) STRAIN @ FAILURE (%) TYPE OF FAILURE

6.6	
3,2	
Long. Splitting	ļ

UNCONFINED COMPRESSIVE STRENGTH (psf)
SHEAR STRENGTH (psf)

8193.4	
 4096.7	

693-94479
REPUBLIC/SOIL BORING PLAN/TX

1	~
тесн	DA
DATE	8/5/10
CHECK	DA
REVIEW	ΛK

	CORE SPECIMENS			STRENGTI FM D 7012-07		NED COMP	JNCONFIN	Ĭ
	B-101, C-24	SAMPLE ID		ORING PLAN/TX	REPUBLIC/SOILI	TI.E	PROJECT TI	
	Core	e l	SAMPLE TY			093-9	177.7	PROJECT NO
	96.5 - 97.2'		SAMPLE DE				<i>,,</i>	REMARKS
	240 - 2114	1,,	JAMI DE DE					REMARKS
AFTER		BEFORE	TENT	WATER CO			TA	SAMPLE DA
SHEAR		SHEAR				3.585		leight (in)
(partial)		(entire)				1.992		Diameter (in)
			l	Tare No.		1.80	r Ratio	Height/Dinmeter
384.21		377.42	Tare (gm)	Wt. Wet Soil &		3.12		Area (in²)
323.88		316.84	Tare (gm)	Wt. Dry Soil &		0.0065		Volume (ft ³)
8.33		0.00		Wt. Tare (gm)		377.42		Weight (gm)
60.33		60.58	m)	Wt. Moisture (g		Wet Density (pef) 128.63		
315.55		316.84		Wt. Dry Soil (gr		Dry Density (pcf) 107.98		
19.12%	<u> </u>	19.12%		Moisture (%)		Machine Speed (in/min) 0.018		
22,140/0	i L		1			0.50		Strain rate (%/n
***************************************		VE STRESS	COMPRESS	Ac	% STRAIN	FORCE	DEFLECT	TIME
		(psi)	(psf)	(in ¹)	(in/in)	(lbs)	(inch)	(min)
		0.0	0.0	3.12	0,00	0.0	0.000	0.0
		3.1	447.4	3.12	0.17	9.7	0.006	0.3
		4.1	593.9	3.13	0.36	12,9	0.013	0.7
19.6	TIME TO FAILURE (min)	8.0 10.7	1146.8 1547.4	3.14 3.15	0.73	25.0	0,026	1.4
9.8	STRAIN @ FAILURE (%)	13.8	1988.1	3.15	0.92 1.09	33.8 43.5	0.033	2.2
Shear	TYPE OF FAILURE	16.9	2426.6	3.16	1,28	53.2	0.033	2.5
*****************	_	19.4	2786.8	3.16	1.45	61.2	0.052	2.9
	1	21.9	3149.3	3.17	1.65	69,3	0.059	3.3
		24.1	3469.7	3,17	1,84	76,5	9.066	3.6
		25.8	3721.8	3,18	2.01	82.2	0.072	4.0
	FAILURE	27.6	3967.5	3.19	2.20	87.8	0.079	4.4
7	SKETCH	32.2 38.3	4632.2 5518.5	3.21	2.76 3.68	103,1	0.099	5.5
l		43.1	6210.7	3.27	4,60	140.9	0.132 0.165	7.3 9.1
Л		47.1	6783.8	3.30	5.52	155.4	0.103	11.0.
1		50.3	7240.7	3.33	6.44	167.5	0.231	12.8
] .	51.7	7447.0	3.35	6,95	173.2	0.249	13.8
		53.6	7713.9	3,38	7.87	181.2	0.282	15.6
		54.7	7877.0	3,42	8.79	186,9	0.315	17.5
		54,8	7885.5	3.46	9.85	189.3	0.353	19,6
1		52.7 45.5	7593.6	3,48	10,49	183.6	0.376	20.9
	1 1/	36,6	6551.6 5273.1	3.51	11.10	159.5 128.9	0,398 0,411	22.1
m.ł	1 =	54.8	7885.5	VE STRENGTH	 		0,411	44.0
		27.4		AR STRENGTH		CISCOTO III		
ĎA:	TECH	*	L.L PL			IALE	Durk Gray SI	Description
8/5/10	DATE	*	P					
DA	CHECK	la como de la como de				T		USCS
	REVIEW					J:	L	einen.

DESCRIPTION	LL	PŁ	I ¹ I	SAMPLE ID
Dark Gray SHALE	-	-	- B-101, C-2	
	SAMPL	ETYPE	Core	96.5 - 97.2

Note: Non-ASTM due to the length of the sample received.

SAMPLE DATA
Wet Density (pcf)
Dry Density (pcf)
Moisture Content

128.6	_
108.0	
19.1%	_

TIME TO FAILURE (min) STRAIN @ FAILURE (%) TYPE OF FAILURE

19.6
9,8
Shear

UNCONFINED COMPRESSIVE STRENGTH (pst) 7885.5 SHEAR STRENGTH (pst) 3942.7

093-94479 REPUBLIC/SOIL BORING PLAN/TX

TECH DA

DATE #5/18

CHECK DA

REVIEW AK

UNCONFINED COMPRESSIVE STRENGTH OF INTACT ROCK CORE SPECIMENS ASTM D 7012-07, METHOD C REPUBLIC/SOIL BORING PLAN/TX SAMPLE ID B-103, C-13 PROJECT TITLE 093-94479 SAMPLE TYPE PROJECT NO. Core 48.1 - 48.5 SAMPLE DEPTH REMARKS SAMPLE DATA WATER CONTENT BEFORE AFTER Height (in) 2.441 SHEAR SHEAR Diameter (in) 1.944 (entire) (partial) Height/Diameter Ratio 1.26 Tare No. Area (in²) 2.97 Wt. Wet Soil & Tare (gm) 273.36 280.39 Volume (ft³) 0.0042 Wt. Dry Soil & Tare (gm) 247.72 254.87 Weight (gm) 273,36 Wt. Tare (gm) 0.00 8.30 Wet Density (pcf) 143.67 Wt. Moisture (gm) 25.64 25.52 Wt. Dry Soil (gm) Dry Density (pcf) 130.19 247.72 246.57 Moisture (%) 10.35% Machine Speed (in/min) 0.012 10,35% Strain rate (%/min). 0.49 FORCE COMPRESSIVE STRESS TIME DEFLECT % STRAIN Ac (mln) (inch) (lbs) (in/in) (in²)(psf) (psi) 0.00 2.97 0.000 0.0 0.0 0.0 0.0 0.1 0.001 14,5 0.05 2.97 703.1 4.9 0.11 17.7 2,97 858.8 6.0 0.2 0.003 0.3 0.004 31.4 0.16 2.97 1521.4 10.6 TIME TO FAILURE (min) 0.4 0.005 45.1 0.22 2.97 2183.2 15.2 4.9 0.6 0.007 62.8 0.28 2,98 3039.3 21.1 STRAIN @ FAILURE (%) 2.4 TYPE OF FAILURE 0.7 0.008 85.4 0.34 2.98 4127.9 28.7 Long. Splitting 117.6 0.39 2.98 5682.5 39.5 0.8 0.010 154.6 0.45 2.98 7468.2 51.9 0.9 0.011 186.9 0.51 2.98 9019,1 62.6 1.0 0.012 215.0 0.56 2.98 10373,4 72.0 1.1 0.014 FAILURE 0.62 2.99 11454.6 79.5 1.3 0.015 237.6 2.99 11758.8 SKETCH 1.4 0.017 244,0 0.68 81.7 11868.1 1.5 0.018 246.4 0.74 2.99 82.4 305.2 0.93 3.00 14671.4 101.9 0.023 1.9 2,5 0.030 538.8 1.21 3.00 25822.9 179.3 787.0 1.50 3.01 37370.6 259.5 3.0 0.037 1026.8 1.79 3.02 48926.3 339.8 3.6 0.044 3,03 414.2 4.2 0.051 1255.5 2.07 59649,1 4.9 0.059 1401.0 2.42 3.04 66327,3 460.6 5.4 0.065 1332.1 2.65 3.05 62917.4 436.9 1028.4 2.90 3.06 48446.6 336,4 5.9 0.071 726.4 3.34 3.07 34065.3 236.6 5.8 0.082 3.79 29132.5 202.3 7.7 0.093 624,2 3.09 UNCONFINED COMPRESSIVE STRENGTH 66327.3 460.6 SHEAR STRENGTH 33163.7 230.3 Description Dark Gray SHALE LL TECH DATE 8/5/10 USCS CHECK DA REVIEW

DESCRIPTION	LI.	LI. PI. PI		SAMPLE ID
Dark Gray SHALE	-	-	-	B-103, C-13
	SAMPL	E TYPE	Core	48.1 - 48.5'

Note: Non-ASTM due to the length of the sample received.

SAMPLE DATA

Wet Density (pcf)
Dry Density (pcf)
Moisture Content

143.7	
130.2	
10.4%	

TIME TO FAILURE (min) STRAIN @ FAILURE (%) TYPE OF FAILURE

4.9
2.4
Long. Splitting

UNCONFINED COMPRESSIVE STRENGTH (psf) 66327.3
SHEAR STRENGTH (psf) 33163.7

093-94479 REPUBLIC/SOIL BORING PLAN/TX

TECH	DA
DATE	8/5/10
CHECK	ĐΑ
REVIEW	AK

	UNCONFI	NED COMI		STRENGTI IM D 7012-07			CORE SPECIMENS	
pposecra	rra v	DEPUNITORON.	BODING PLANTY	1	SAMPLE ID		B-103, C-18	
PROJECT TITLE REPUBLICSON, BORING PLANTX			SAMPLE TY	ne	Core			
PROJECT NO. 093-94479								
REMARKS				SAMPLE DE	rin	70.0 - 70.85'		
SAMPLE DA	TÀ	····		WATER CO	NTENT	BEFORE		AFTER
Height (in)					SHEAR		SHEAR	
Diameter (in)		1.937	1			(entire)		(partial)
leight/Diamete	er Ratio	2.22		Tare No.			Ī	······································
Area (in²)		2.95		Wt. Wet Soil &	Tare (gin)	489.72	1	494.18
/olume (ft ³)		0.0073	1	Wt. Dry Soil &	****	452.21	†	456.97
Weight (gm)		489,72	1	Wt. Tare (gm)		0.00	1 h	8.37
Vet Density (p.	cf)	147,30	1	Wt. Moisture (g	mì	37.51	1	37.21
Dry Density (po		136.02	1	Wt. Dry Soil (g		452.21	†	448.60
Machine Speed		0.021	1	Moisture (%)	*****	8.29%	<u> </u>	8.29%
Strain rate (%/r	**	0.49		moinmic (Na)	:	V-#2 / R	J L	0.67 78
TIME	DEFLECT	FORCE	% STRAIN	Ac	COMPRESS	IVE STRESS		
(min)	(inch)	(lbs)	(in/in)	(in¹)	(psf)	(psi)]	
0.0	0.000	0.0	0.00	2.95	0.0	0.0]	
0.0	0.001	42.7	0.02	2.95	2085.6	14,5		
0.1	0.003	85.4	0.06	2.95	4169.1	29,0	4	
0.2	0.004	115.2	0.10	2.95 2.95	5622.5	39.0 51.0	TOWNER TO PAIR HOPE AND A	* A
0.3 0.3	9,096 0.007	150.6	0.17	2.95	7349.7 8722.0	60.6	TIME TO FAILURE (min) STRAIN @ FAILURE (%)	3.0 1.5
0.4	0.009	210.2	0.21	2,95	10250.1	71.2	TYPE OF FAILURE	Shear
0.5	0.010	233.6	0.24	2.95	11385,5	79,1	-	***************************************
0.6	0.012	253.7	0.28	2,96	12361.7	85,8	1	
0.6	0.014	261.7	0.32	2.96	12749.8	88.5		
0.7	0.015	264.2	0.36	2,96	12862.4	89.3		
0.8	0.017	265.0	0.39	2,96	12897.7	89.6	FAILURE	
0.9	0.019	268.2 292,4	0.43	2.96 2.96	13049.1 14219.9	90,6 98,7	SKETCH	
0.9	0.020 0.027	477.6	0.64	2.96	23189.6	161,0	1 / /	
1.6	0.034	666.0	0.80	2.97	32287.0	224,2	1 1 / /	l
2.0	0.043	939.1	1.00	2.98	45428.7	315.5	1 // /	
2.4	0.050	1107.4	1.16	2.98	53484.9	371,4	1 1/1	
2.8	0.059	1345.7	1.37	2.99	64860.3	450.4		
3.0	0.064	1413.0	1.49	2.99	68020.1	472.4		l
3:6	0.076	1071.1	1.76	3.00	51420.4	357.1		\
4.0	0.084	738.5	1,95	3.01	35383.1	245.7	1 1 Y	Y
4,4	0.093	487.2 394.6	2.16	3.01	23295.9 18830.3	161.8	1 1	
4.8	0.101		ED COMPRESSI	A		472.4	1	J
				AR STRENGTH	 	236.2		
Description	Dark Gray SI	IALE			LL		- 	······································
					PL		TECH	BA:
]	Pi		DATE	8/5/10
USCS							CHECK	ĎA
						*	REVIEW	AK

	DESCRIPTION		LL	PL	Pl	SAMPLE ID
Dark Gray SHAL	Æ	,	-	-	-	B-103, C-18
			SAMPL	E TYPE	Core	70.0 - 70.851
USCS	-					

SAMPLE DATA
Wet Density (pcf)
Dry Density (pcf)
Moisture Content

	147.3	
	147.0	
-		
	136.0	
	12010	
	4	
	8,3%	
	11127 / 9	

TIME TO FAILURE (min) STRAIN @ FAILURE (%) TYPE OF FAILURE

I	3.0
I	1.5
	Shear

UNCONFINED COMPRESSIVE STRENGTH (psf) 68020.1 SHEAR STRENGTH (psf) 04010.1

093-94479 REPUBLIC/SOIL BORING PLAN/FX

TECH	15 A
DATE	8/5/10
CHECK	DA
REVIEW	AK

UNCONFINED COMPRESSIVE STRENGTH OF INTACT ROCK CORE SPECIMENS ASTM D 7012-07, METHOD C PROJECT TITLE REPUBLIC/SOIL BORING PLAN/TX SAMPLE ID B-107, C-8 PROJECT NO. 093-94479 SAMPLE TYPE Core SAMPLE DEPTH 251 REMARKS SAMPLE DATA WATER CONTENT BEFORE AFTER 3.778 SHEAR Height (in) SHEAR Dinmeter (in) 2,036 (entire) (partial) Height/Diameter Ratio 1.86 Tare No. Area (in2) Wt. Wet Soil & Tare (gm) 3,26 454.94 460,43 Volume (ft³) Wt. Dry Soil & Tare (gm) 413.26 0.0071 419.02 454,94 Weight (gm) Wt. Ture (gm) 0.00 8.39 Wet Density (pcf) 140.84 Wt. Moisture (gm) 41.68 41.41 Dry Density (pcf) 127.94 Wt. Dry Soil (gm) 413.26 410.63 0.019 Moisture (%) 10.08% Machine Speed (in/min) 10.08% Strain rate (%/min) 0.50 TIME DEFLECT FORCE % STRAIN Ac COMPRESSIVE STRESS (inch) (lbs) (ln/in) (in1) (min) (psf) (psi) 0.000 3.26 0.0 0.0 0.00 0.0 13.7 0.03 3.26 605.8 4.2 0.1 0.001 0.08 3.26 640.9 0.003 14.5 4.5 0.1 0.2 0.004 17.7 0.12 3.26 782.8 5.4 0.3 0.006 23.4 0.16 3,26 1031.6 7.2 TIME TO FAILURE (min) 3.7 0.4 0.008 30.6 0.20 3.26 1351.2 9.4 STRAIN @ FAILURE (%) 1.9 39.5 0.24 3.26 1741.5 12.1 TYPE OF FAILURE SHEAR 0.009 0.5 0.011 49.1 0.28 3.26 2166.8 15.0 0.6 0.33 3.27 2663.2 18.5 0.6 0.012 60.4 0.37 22.2 0.7 0.014 72.5 3,27 3194.4 0.8 0.016 87.0 0.41 3.27 3831.3 26.6 0.020 132.1 0.52 3.27 5811.6 40.4 FAILURE 1.0 1.4 0,028 224.7 0.73 3,28 9866.0 68.5 SKETCH 0.034 266.6 0,90 3.29 11685.1 81.1 1.8 2.1 0.040 371.3 1.06 3.29 16246.6 112.8 541.2 3.30 23642.4 164.2 0,047 1.23 2.4 0.053 773.1 1.40 3.30 33717.5 234.1 2.8 3.2 0.061 1171.8 1,61 3.31 50994.8 354.1 3.5 0.067 1561,6 1.78 3.31 67842.6 471.1 3.7 0.070 1631.0 1.85 3.32 70802.6 491.7 3.32 64983.7 451.3 3.7 0.071 1497.2 1.87 0.074 1229.8 1.96 3.32 53327.4 370.3 3.9 2.09 280,0 4.1 0.079 931.0 3.33 40318.4 2.16 63.2 4.3 0.082 210,2 3.33 9096.1 UNCONFINED COMPRESSIVE STRENGTH 70802.6 491.7 SHEAR STRENGTH 35401.3 245,8 Description Dark Gray SANDSTONE TECH DW/DA DATE 6/15/10 CHECK USCS DA REVIEW AK

ı	DESCRIPTION	LL	PL	PI	SAMPLE ID
Dark Gray SAND	STONE	-	•	-	B-107, C-8
		SAMPL	E TYPE	Core	25'
USCS	-				

Note: Not tested in accordance with ASTM standards due to the length of the sample received.

SAMPLE DATA

Wet Density (pcf)
Dry Density (pcf)
Moisture Content

140	18.
127	.9
10,1	%

TIME TO FAILURE (min) STRAIN @ FAILURE (%) TYPE OF FAILURE

3,7	
1.9	
 SREAR	

UNCONFINED COMPRESSIVE STRENGTH (psf) SHEAR STRENGTH (psf) 70802.6 35401.3

093-94479

REPUBLIC/SOIL BORING PLAN/TX

TECH DWIDA
DATE 6/15/16
CHECK DA
REVIEW AK

	UNCONFI	NED COMI		STRENGTI TM D 7012-07			CORE SPECIMENS	
PROJECT TITLE REPUBLIC/SOIL BORING PLAN/TX				1	SAMPLE ID		B-107, C-13	
PROJECT NO. 093-94479		4	SAMPLETY	PE	Core			
REMARKS	··		~	-	SAMPLE DE		65'	
KE, MILLE				1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	****		
SAMPLE DA	TA		<u>.</u>	WATER CO	NTENT	BEFORE		AFTER
Height (in)		2.169	1			SHEAR		SHEAR
Diameter (in)		1.981]			(entire)		(partial)
Height/Diamete	r Ratio	1.09	1	Tare No.		_		
Area (in²)		3.08		Wt. Wet Soil &	Tare (gm)	258.19	1	261,55
Volume (ft3)		0.0039		Wt. Dry Soil &		240.90		244.59
Weight (gm)		258.19	1	Wt. Tore (gm)	- 	0.00	1	8.36
Wet Density (p	ef)	147,06	1	Wt. Moisture (g	m)	17.29	1	16.96
Dry Density (po		137,21	1	Wt. Dry Soil (gr		240.90	1	236,23
Machine Speed		0.011	1	Moisture (%)		7.18%	†	7.18%
Strain rate (%/n		0.51		Triviación (74)			J L	7,10 /0
TIME	DEFLECT	FORCE	% STRAIN	Ac	COMPRESS	IVE STRESS		
(min)	(inch)	(lbs)	(in/in)	(in¹)	(pxf)	(psi)]	
.0,0	0.000	0,0	0.00	3.08	0.0	0.0		
0.1	0.001	97.5	0.07	3.08	4549.8	31.6		
0,2	0.003	155.4	0.12	3.09	7253.6	50.4		
0.3	0.004	206,2	0.17	3.09 3.09	9616.5 10925.3	66.8	Train to the interior	F.A.
0.4 0.5	0.005	234,4	0.27	3.09	11670.4	75.9 81.0	TIME TO FAILURE (min) STRAIN @ FAILURE (%)	5.0 2.5
0,6	0.007	257.7	0.32	3.09	12002.1	83.3	TYPE OF FAILURE	Long. Splitting
0.7	0.008	262.6	0.37	3,09	12220.8	84.9		, , , F
0.8	0.009	269.0	0.42	3.10	12514.2	86.9		
0.9	0.010	284.3	0.47	3.10	13219,2	91.8		
1.0	0,011	317.3	0.52	3.10	14747.1	102.4		
1.1	0.012	380.1	0.57	3.10	17657.7	122,6	FAILURE	
1,2	0.014	452.6 731.3	0.63	3.10	21013.8 33887.5	145.9 235.3	SKETCH	
1.6 2.1	0.018	1145.2	1.06	3.12	52934.3	367.6	1 1 1	·
2.6	0.029	1586.5	1.32	3.12	73144.5	507.9		\
3.1	0,034	2041.6	1,57	3.13	93886.0	652.0	1 11 1	1
3.6	0.040	2674.6	1.83	3.14	122676.8	851,9	1 11 \	l . I
4.0	0.044	2741.4	2.05	3,15	125459,1	871.2		
4.5	0.050	3322.9	2.30	3,15	151677.6	1053.3]]]	11
5.0	0.055	3705.0	2,54	3.16	168708.8	1171.6	4 11 1	
5.4	0.060	3580.6 2071.4	2,76	3.17	162677.0 93913.4	1129.7 652.2	4 1	
5.8 6.3	0.069	1895.8	3.18	3.18	85757.2	595.5	1 11 -	11
YN	1 0,4112		ED COMPRESS		168708.8	1171.6	1	11
				AR STRENGTH	84354.4	585.8	<u></u>	
Description	Gray LIMES	TONE			LL			*****
			-		PL		TECH	DW/DA
			·,··,··		PI	<u> </u>	DATE	6/15/10
USCS							СНЕСК	DA
							REVIEW	AK.

DESCRIPTION			LL	PL.	PI	SAMPLE ID
Gray LIMESTON	E		-	-	-	B-107, C-13
			SAMPLETYPE		Core	65'
USCS	-					

Note: Not tested in accordance with ASTM standards due to the length of the sample received.

SAMPLE DATA

Wet Density (pcf) Dry Density (pel)

Moisture Content

147.1 137.2 7.2%

TIME TO FAILURE (min) STRAIN @ FAILURE (%) TYPE OF FAILURE

5.0 Long. Splitting

UNCONFINED COMPRESSIVE STRENGTH (psf) SHEAR STRENGTH (psf)

168708.8 84354.4

093-94479

REPUBLIC/SOIL BORING PLAN/TX

TECH DW/DA DATE 6/15/10 CHECK D/L REVIEW ٨ĸ

	UNÇONFI	NED COMP			H OF INTA , METHOD (CORE SPECIMENS
PROJECT TITLE REPUBLIC/SOIL BORING PLAN/TX PROJECT NO. 093-94479 REMARKS -			SAMPLE ID SAMPLE TYPE SAMPLE DEPTH			B-116, C-10 Core 31.25 - 31.85'	
SAMPLE DA	TA			WATER CO	NTENT	BEFORE	AFTE
deight (in)		2.880		to the management of the co		SHEAR	SHEAL
Diameter (in)		1.964				(entire)	(partla
Height/Diamete	z Datio	1,47		Tare No.		(<u></u>	
rieigno Diamete Arca (in ²)	i reauti	3.03		Wt. Wet Soil &	Tare (am)	315,32	322.93
Volume (ft ³)		0.0050		Wt. Dry Soil &	1975 7	276,25	283,96
		315.32		Wt. Tare (gm)	inic (giii)	0.00	8.40
Weight (gm)	.ń			Wt. Hare (gm) Wt. Moisture (g		39.07	· · · · · · · · · · · · · · · · · · ·
Wet Density (po		137.62					38.97
Dry Density (pe		120.56		Wt. Dry Soil (g	m)	276.25	275.56
Machine Speed		0.014		Moisture (%)		14.14%	14.14%
Strain rate (%/n		0.49					
TIME	DEFLECT	FORCE	% STRAIN	Ac		IVE STRESS	
(min)	(inch)	(lbs)	(in/in)	(jn²)	(psf)	(psi)	
0,0	0.000	0.0	0.00	3.03	0.0	0.0	
0.0	100.0	13.7	0.02 0.06	3.03	651.0 650.8	4.5	
0,1	0.002	13.7	0.10	3.03	650.6	4.5	
0.3	0.004	14.5	0.14	3.03	688.3	4.8	TIME TO FAILURE (min) 4.5
0,3	0.005	15.3	0.17	3,03	726.5	5.0	STRAIN @ FAILURE (%) 2.2
0.4	0.006	15.3	0.21	3.04	726.2	5.0	TYPE OF FAILURE Shear
0,5	0.007	16.9	0.24	3.04	802.3	5.6	
9.6	0.008	23.4	0.28	3,04	1107.2	7.7	
0.6	0.009	33.0	0.32	3.04	1564.6	10.9	1
0.7	0.010	48,3	0.36	3,04	2289.1	15.9	FAILURE
0.8	0.011	62.8 98.3	0.39	3.04	2974.4 4649.0	32.3	SKETCH
0.9	0.015	133.7	0,53	3.05	6320.7	43.9	7
1,4	0.020	193.3	0.70	3.05	9123.6	63.4	1 / /
1.8	0.026	240,0	0.90	3.06	11305.2	78.5	1 /
2.2	0.031	256.9	1.06	3.06	12082,0	83.9]
2,6	0,036	263.4	1.26	3.07	12360,0	85.8] /
3.0	0.042	292.4	1,47	3.07	13692.4	95.1	1 / /
3,4	0.048	318.1	1.67	3.08	14868.7	103.3	4 / / /
3.8	0.054	362.4	1.87	3.09	16904.0 19057.3	117,4	-
4,5	0.063	409.9 363.2	2.19 2.31	3,10	16866.2	132,3	1 / 1
4.7 5.0	0.066	317.3	2.45	3.11	14712.4	102.2	1 /
.310.	1 0,011		ED COMPRESS			132.3	
Description	Dark Gray S			AR STRENGTH		66.2]
2 at 1p11031					PI		TECH DA
					P		-
				1	ř	<u> </u>	
USCS							CHECK DX
							REVIEW AK

DESCRIPTION			LL	PL.	PI	SAMPLE ID
Dark Gray SHALE			-	-	-	B-110, C-10
			SAMPL	E TYPE	Core	31,25 - 31,85
USCS						

Note: Non-ASTM due to the length of the sample received.

SAMPLE DATA
Wet Density (pcf)
Dry Density (pcf)

Moisture Content

137.6
120.6
14.1%

TIME TO FAILURE (min) STRAIN @ FAILURE (%) TYPE OF FAILURE

4.5
2.2
Shear

UNCONFINED COMPRESSIVE STRENGTH (psf)

SHEAR STRENGTH (psf)

) 19057.3) 9528.7

093-94479 REPUBLIC/SOIL BORING PLAN/TX

TECH	DA
DATE	8/4/10
CHECK	DA
REVIEW	ΛK

)	UNCONFI	NED COMP		STRENGTI IM D 7012-07			CORE SPECIMENS
PROJECT T	PP 87	REPUBLIC/SOIL I	MOBINE BLANETY	SAMPLE ID			B-112R, C-15
			4479		SAMPLE TY	DE.	Care
PROJECT N	ο,						50'
REMARKS			SAMPLE DE	rin	30'		
SAMPLE DA	TA			WATER CO	NTENT	BEFORE	AFTER
Height (in)		3.225				SHEAR	SHEAR
Diameter (in)		1.963				(entire)	(partial)
Height/Diamete	r Ratio	1.64		Tare No.]
Area (in ²)		3.03		Wt. Wet Soil &	Tare (gm)	383.61	389.79
Volume (ft ³)		0,0056		Wt. Dry Soil &		363.06	369.36
Weight (gm)		383.61		Wt. Tare (gm)		0,00	8,37
	.a.	149.66		Wt. Moisture (g	(en)	20.55	20.43
Wet Density (po				Wt. Dry Soil (g		363.06	360.99
Dry Density (pa		141.64	,	1	111)		
Machine Speed	•	0.019		Moisture (%)		5.66%	5.66%
Strain rate (%/n		0,59				W. 102 11925-2122-	
TIME	DEFLECT	FORCE	% STRAIN	Ac		IVE STRESS	-
(mln)	(inch)	(lbs)	(in/in)	(in¹)	(psf) 0.0	(psi) 0.0	
0.0	0,000	17.7	0.00	3.03	841.9	5.8	
0.2	0.005	19.3	0.20	3.03	917.9	6.4	-
0.4	0.008	29.8	0,24	3.03	1414.4	9.8	-
0.5	0.009	50.7	0.29	3.04	2407,2	16.7	TIME TO FAILURE (min) 3.5
0.6	0.011	95.0	0.34	3,04	4504.7	31.3	STRAIN @ FAILURE (%) 2.0
0.6	0.012	133,7	0.38	3,04	6337.2	44,0	TYPE OF FAILURE Long. Splitting
0.7	0.014	180,4	0.42	3.04	8547.4	59.4	
0.8	0.015	215.0	0.46	3.04	10182.8	70.7	4
0.8	0.016	229.5	0.50 0.54	3,04	10865.2	75,5 78,3	4
0.9 1.2	0.017	238.4 323.8	0.70	3.05	11281.6 15297.5	106.2	FAILURE
1.5	0.029	691.0	0.89	3.05	32584.9	226,3	SKETCH
1.8	0.035	1223.3	1.09	3.06	57571.6	399.8	
2.2	0.041	1616.3	1,29	3.07	75916.3	527.2	1 (/
2.5	0,048	2590.0	1.48	3.07	121408.3	843.1	
2.8	0.054	3558,0	1.68	3.08	166451,2	1155.9	
3,2	0,060	4485.8	1.87	3.08	209436.9	1454.4	
3.5	0.066	5306,0	2.05	3,09	247297.4	1717.3	
3.5	0,067	4236.2	2.08	3.09	197367.7	1370.6	4 \ \ \ \ \
3,8	0.072	3140.9 2239.7	2,23	3,10	146116.8	1014.7 722.5	-
4.0 4.3	0.074	1522.1	2.54	3.11	70581.6	490.2	1 \ \
4.6	0.088	1164.5	2.73	3.11	53895.8	374.3	
729	1 -1000			IVE STRENGTII	<u> </u>	1717.3	becominides in a state of the s
				EAR STRENGTH		858.7	1
Description	Gray Sandy S	SHALE			ĽΙ		
					Pl		TECH DW/DA
					P	1 -	DATE 6/15/10
USCS	-						CHECK DA
	**************************************						ŘEVIEW AK

DESCRIPTION	LL	PL.	Pf	SAMPLE ID
Gray Sundy SHALE	ed .	-	-	B-112R, C-15
	SAMPI	SAMPLE TYPE		501
USCS -				

Note: Not tested in accordance with ASTM standards due to the length of the sample received.

SAMPLE DATA Wet Density (pcf)

Dry Density (pcf)

Moisture Content

149.7	
141.6	
£ 70/.	

TIME TO FAILURE (min) STRAIN @ FAILURE (%) TYPE OF FAILURE

3.5	
2.0	
Long, Splitting	

UNCONFINED COMPRESSIVE STRENGTH (psf) SHEAR STRENGTH (psf)

247297.4 123648.7

093-94479

REPUBLIC/SOIL BORING PLAN/TX

TECH DW/DA DATE 6/15/10 CHECK DA REVIEW AK

PROJECT TI								
PROJECT TITLE REPUBLIC/SOIL BORING PLAN/TX		REPUBLIC/SOIL	BORING PLAN/TX		SAMPLE ID		B-115, C-13	
PROJECT N	D,	093-9	14479		SAMPLE TY	PE	Core	
REMARKS -				SAMPLE DE	ртн	45'		
SAMPLE DA	924	······································		WATER CO	พากษณา	BEFORE		Craro
Height (in)	(3.25	3.861		WAIR CO	1 1 151 1 1	SHEAR		AFTER SHEAR
Diameter (in)		2.003				(entire)		
	in at			Tare No:		(entire)	٦ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ	(partial)
leight/Diamete	r Kano	1.93				<u> </u>	-	*:
Area (in²)		3.15		Wt. Wet Soil &		466.03	-l	472.16
Volume (ft³)		0.0070		Wt. Dry Soil &	fare (gm)	426.00	- -	432.31
Veight (gm)		466,03		Wt. Tare (gm)		0.00	4	8.25
Wet Density (po	•	145.86		Wt. Moisture (g		40.03	_	39.85
Dry Density (po	ŋ	133,33		Wt. Dry Soil (g	m)	426.00		424,06
Machine Speed	(in/min)	0.019		Moisture (%)		9.40%]	9.40%
Strain rate (%/n	nin)	0,49						
TIME	DEFLECT	FORCE	% STRAIN	Ae	COMPRESS	IVE STRESS		
(min)	(inch)	(lbs)	(in/in)	(in²).	(psf)	(psl)		
0.0	0.000	0.0	0.00	3.15	0.0	0.0		
1.0	0.002	20.1	0.06	3.15	919.9	6.4		
0.2	0.003	34.6	0.09	3.15	1581.6	11.0		
0.2	0.005	57.2 83.8	0.12 0.16	3.15 3.16	2609.9 3821.8	18.1 26.5	Transport can time this T	destactions and an arrangement and arrangement
0.3	0.006 0.007	115.2	0.19	3.16	5253.3	36.5	TIME TO FAILURE (min) STRAIN @ FAILURE (%)	3,3
0.4	0.009	149.8	0.22	3.16	6830.7	47.4	TYPE OF FAILURE	SHEAR
0.5	0.010	184,4	0.25	3.16	8407.0	58,4	-	
0.6	0.011	212.6	0.29	3.16	9688.9	67.3		
0.6	0.012	237.6	9.32	3.16	10822.6	75.2		
0.7	0.014	252.9	0.35	3.16	11516.3	80.0		
8.0	0.015	260.9	0.38	3.16	11878.9	82.5	FAILURE	
1.1	0.021	338,3	0.55	3.17	15373.0	106,8	SKETCH	needing.
1.4	0.028	622,5	0.71	3.17	28247.0	196.2	4	
2.1	0,034 0,040	935.0	0.88 1.04	3,18	47355.2 59111.8	294.1 410.5	1 1 1	:
2.4	0.047	1667.9	1.21	3.19	75303.4	522.9		
2.8	0.053	2001,3	1.37	3,19	90206.0	626.4	1 1 1 1	
3.1	0.059	2288.8	1.53	3.20	102993.2	715.2		
3.3	0.062	2340.0	1.61	3.20	105219.5	730.7		
3.4	0,065	2220.4	1.68	3,20	99765.7	692.8		
3.5	0,066	1410.2	1.72	3,21	63335.9	439.8		
3.7	0.070	659.6	1,81	3.21	29596.7	205,5		
3,9	0.074	351.9	1.92	3,21	15774.9	109.5	L	
		ÜNCONFINI	ED COMPRESSI		-	730.7	ana.	
			SHE	AR STRENGTH	52609.8	365.3	MACA	
Description	Gray SHALE		MENTALANT A PROMINENCE CONTRACTOR OF THE PROMINENCE OF THE PROMI	1	t.1	_	1	
** ************************************					PI.		TECH	titinu t
								DW/DA
	1]	b	·	DATE	6/15/10

	DESCRIPTION	1,L	የኒ	PI	SAMPLE ID
Gray SHALE		-		-	B-115, C-13
		SAMPL	ETYPE	Core	45'
USCS					

Note: Not tested in accordance with ASTM standards due to the length of the sample received.

SAMPLE DATA

Wet Density (pcf) Dry Density (pcf)

Moisture Content

145.9	
 133.3	
 9.4%	

TIME TO FAILURE (min)
STRAIN @ FAILURE (%)
TYPE OF FAILURE

3,3	
1.6	
SHEAR	

UNCONFINED COMPRESSIVE STRENGTH (psf)

SHEAR STRENGTH (psf)

105219.5 52609.8

093-94479

REPUBLIC/SOIL BORING PLAN/TX

TECH DW/DA

DATE 6/15/10

CHECK DA

REVIEW AK

1	UNCONFI	NED COMI		STRENGTI IM D 7012-07			CORE SPECIMENS
PROJECT TITLE REPUBLIC/SOIL BORING FLAN/TX PROJECT NO. 093-94479 REMARKS -		SAMPLE ID SAMPLE TYPE SAMPLE DEPTH			B-116, C-16 Core 45'		
SAMPLE DA Height (în) Diameter (in)	TA	3.927 2.026		WATER COI	NTENT	BEFORE SHEAR (entire)	AFTER SHEAR (partial)
Height/Diamete Area (in ²) Volume (ft ³)	r Ratio	1.94 3.22 0.0073		Tare No. Wt. Wet Soil & Wt. Dry Soil &		467,26 418,26	465.87 417.90
Weight (gm) Wet Density (po Dry Density (po Machine Speed	:f)_	140.54 125.81 0.019		Wt. Tare (gm) Wt. Moisture (g Wt. Dry Soil (gi Moisture (%)		0.00 49.00 418.26 11.71%	8.41 47.97 409.49 11.71%
Strain rate (%/n TIME	nin) DEFLECT	0,48 FORCE	% STRAIN	Ac		IVE STRESS	
(min) 0,0 0.1 0,2	(inch) 0,000 0,003 0,004	(lbs) 0.0 41.9 62.0	(in/ln) 0.00 0.07 0.10	(in²) 3,22 3,23 3,23	(psf) 0.0 1869.3 2767.4	(psi) 0.0 13.0 19.2	
0,3 0,3 0,4	0.005 0.007 0.008	84.6 109.5 134.5	0.14 0.17 0.20	3,23 3,23 3,23	3772.4 4884.2 5995.7	26.2 33.9 41.6	TIME TO FAILURE (min) 3.6 STRAIN @ FAILURE (%) 1.8
0.5 0.6 0.6	0,009 0,011 0,012	161.1 191.7 207.8 222.3	0.23 0.27 0.31 0.34	3,23 3,23 3,23 3,23	7178,3 8538,5 9253.1 9895.2	49.8 59.3 64.3 68.7	TYPE OF FAILURE SHEAR
0.7 0.8 0.8 0.9	0.013 0.015 0.016 0.017	231.1 237.6 259.3	0.37 0.41 0.44	3,24 3,24 3,24 3,24	10286.3 10568.6 11532.4	71.4 73.4 80.1	FAILURE SKETCH
1,0 1.5 1.8	0.020 0.028 0.034	274.6 492.9 653.2	0.51 0.71 0.87	3,24 3,25 3,25 3,26	12204.8 21859,8 28920.8 34534.6	84.8 151.8 200.8 239.8	
2.1 2.5 2.9 3.3	0.041 0.048 0.055 0.063	781.2 902.8 994.6 1113.8	1.03 1.23 1.39 1.60	3.26 3.27 3.28	39828.7 43807.5 48956.9	276.6 304.2 340.0	
3,6 3.9 4.1	0.069 0.074 0.078	1181.5 963.2 637.8	1.76 1.89 1.98	3:28 3:29 3:29	51847.5 42212.8 27925.8	360.1 293.1 193.9	
4,4	0.084	UNCONFIN	2.14 ED COMPRESSI SHE	3.29 VE STRENGTH AR STRENGTH	19081.4 51847.5 25923.8	132.5 360.1 180.0	
Description	Gray SHALE				LL PL PI		TECH DW/DA DATE 6/6/10
USCS	*			J∤		L	CHECK DA REVIEW AK

DESCRIPTION	LL	PL	PI	SAMPLE ID
Grny SHALE	•	-	-	B-116, C-16
	SAMPL	E TYPE	Core	451

Note: Not tested in accordance with ASTM standards due to the length of the sample received.

SAMPLE DATA

Wet Density (pef) Dry Density (pcf)

Moisture Content

 140.5	
 125.8	
 11 7%	

TIME TO FAILURE (min) STRAIN @ FAILURE (%) TYPE OF FAILURE

		
	3,6	
	1.8	
	SHEAR	

UNCONFINED COMPRESSIVE STRENGTH (psf)

RESSIVE STRENGTH (psf) 51847.5 SHEAR STRENGTH (psf) 25923.8

093-94479

REPUBLIC/SOIL BORING PLAN/TX

TECH DW/DA

DATE 6/16/10

CHECK DA

REVIEW AK

UNCONFINED COMPRESSIVE STRENGTH OF INTACT ROCK CORE SPECIMENS ASTM D 7012-07, METHOD C B-116, C-18 REPUBLIC/SOIL BORING PLAN/TX SAMPLE ID PROJECT TITLE PROJECT NO. 093-94479 SAMPLE TYPE Core REMARKS SAMPLE DEPTH 651 WATER CONTENT BEFORE SAMPLE DATA AFTER SHEAR Height (in) 4.004 SHEAR Diameter (in) 2.026 (entire) (partial) Height/Diameter Ratio 1,98 Tare No. Area (in2) Wt. Wet Soil & Tare (gm) 512.20 3,22 506.38 Volume (ft³) 0.0075 Wt. Dry Soil & Tare (gm) 484.00 478.95 512.20 Wt. Tare (gm) 0.00 Weight (gm) 8.20 151.10 Wt. Moisture (gm) 28.20 Wet Density (pcf) 27.43 Dry Density (pcf) 142.78 Wt, Dry Soil (gm) 484.00 470.75 Machine Speed (in/min) 0.019 Moisture (%) 5.83% 5.83% Strain rate (%/min) 0,47 % STRAIN COMPRESSIVE STRESS TIME DEFLECT FORCE Ac (in/in) (in^x) (inch) (lbs) (psf) (psl) (min) 0.0 0.000 0.00 3.22 0.0 0.03 3,22 3560.3 24.7 79.7 0.1 0.001 178.8 0.07 3.23 7980.5 55.4 0.1 0.003 0.09 3.23 66.4 0.2 0.004 214.2 9560.2 TIME TO FAILURE (min) 0.2 0.005 234.4 0.12 3.23 10456.0 72.6 2.8 0.3 0.007 246.4 0.17 3.23 10989.7 76.3 STRAIN @ FAILURE (%) 1.3 261.7 0.19 3,23 11669.2 B1.0 TYPE OF FAILURE 0.4 0.008 Long, Splitting 0.4 0,009 266.6 0.21 3.23 11882.2 82.5 3.23 84.5 273.0 0.26 12163.5 0.5 0.010 287.5 0.28 3.23 12806.4 88.9 0.6 0.011 0.7 0.014 424,4 0,34 3.23 18894.0 131.2 0.46 3.24 42683.7 296.4 FAILURE 1.0 0.018 960.0 SKETCH 1.2 0.023 1676.7 0.58 3.24 74462.5 517.1 2493.4 0.70 3.25 110600.2 768.1 1.5 0.028 1.7 0.033 3355.1 0.81 3.25 148645.0 1032.3 4226.5 0.93 3.25 187027.7 1298.8 2.0 0.037 2.2 0.042 5081.8 1.05 3.26 224606.4 1559.8 5907.3 3,26 260779.0 1811.0 2.5 0.047 1,17 2.7 0.052 6322.0 1.29 3.27 278751.0 1935.8 2.8 0.053 6382.0 1.32 3,27 281296.2 1953.4 0.053 4203.9 1,34 3.27 185270.2 1286.6 2.8 2.9 0.056 1191.9 1.40 3.27 52494.6 364.5 1.49 3.27 45148.0 313.5 0.060 1026.0 3.1 UNCONFINED COMPRESSIVE STRENGTH 281296.2 1953.4 140648.1 SHEAR STRENGTH 976.7 Description Gray SHALE TECH PI DW/DA DATE 6/16/10 USCS CHECK DA. REVIEW

Ľ	ESCRIPTION		LL	PL	PI	SAMPLE ID
Gray SHALE		e.	u	•	-	B-116, C-18
			SAMPL	ETYPE	Core	651
USCS	-					

SAMPLE DATA
Wet Density (pcf)
Dry Density (pcf)
Moisture Content

151,1 142.8 5.8% TIME TO FAILURE (mln) STRAIN @ FAILURE (%) TYPE OF FAILURE

2.8 1.3 Long, Splitting

UNCONFINED COMPRESSIVE STRENGTH (psf)
SHEAR STRENGTH (psf)

281296,2 140648.1

093-94479

REPUBLIC/SOIL BORING PLAN/TX

TECH DW/DA
DATE 6/16/10
CHECK DA
REVIEW AK

]	UNCONFII	VED COMI		STRENGTI IM D 7012-07			CORE SPECIMENS	
PROJECT T	ITI. F	BEPUBLIC/SOIL	BORING PLAN/IX		SAMPLE ID		B-116, C-20	
PROJECT N			94479		SAMPLE TY	DE	Core	
	U.				SAMPLE DE		75°	
REMARKS		L		İ	avante de	PIN	/3.	
SAMPLE DA	TA			WATER CO	NTENT	BEFORE	A	FTER
leight (in)		3.253				SHEAR	S	HEAR
Diameter (in)		1,984				(entire)	(1	ourtful)
leight/Diamete	r Ratio	1.64		Ture No.		-]	
Aren (in ²)		3,09	1	Wt. Wet Soil &	Tare (gm)	371.80		378.48
Volume (ft ⁾)		0.0058		Wt. Dry Soil &	***, 2: 2	334,10	1	340,95
Veight (gm)		371,80		Wt. Tare (gm)	S. CO. XMITT	0.00	1	B.34
Vet Density (po	eñ.	140.78		Wt. Moisture (g	tan	37.70		37.53
Ory Density (po		126.50		Wt. Dry Soil (g	* 1	334.10	-	332.61
Machine Speed		0.019	-	Moisture (%)		11.28%	1	
viacnine Speca Strain rate (%/n		0.019		moisting (76)		11,2070		1.28%
TIME	DEFLECT	FORCE	% STRAIN	Ac	COMPRESS	IVE STRESS	T	
(min)	(inch)	(lbs)	(ln/in)	(in²)	(psf)	(psi)	1	
0.0	0.000	0.0	0.00	3.09	0.0	0.0	1	
0.1	0.002	48.3	0.05	3,09	2250.1	15.6	1	
0.1	0.003	104.7	0,09	3.09	4872.6	33.8		
0.2	0.004	153.8	0.12	3.10	7156.9	49.7	ļ	
0.2	0.005	205.4	0.15	3.10	9552.0	66.3	TIME TO FAILURE (min)	2.3
0.3	0,006	230,3 246,4	0.17	3.10	10710.3	74,4	STRAIN @ FAILURE (%)	1.3
0,3	0.007	252.9	0.20	3.10 3.10	11455,5 11751.9	79.6 81.6	TYPE OF FAILURE Lang	g. Splitting
0.4	0.009	256.9	0.26	3.10	11935.2	82.9		
0.5	0.010	262.6	0.32	3.10	12190.1	84.7		
0.6	0.011	265.8	0.35	3.10	12336.0	85.7	1	
0.6	0.012	283.5	0.38	3,10	13154.6	91.4	FAILURE	
0.9	0.016	484.8	0.51	3,11	22468.7	156.0	SKETCH	
1.1	0.021	690.2	0.64	3,11	31942.0	221.8		
1.3	0.026	869.8	0.79	3.12	40194.6	279.1	1 1 1 1	
1.6	0.030	1001.1	0.93	3.12	46194.7 51135.1	320.8 355.1	4 }	
1.8	0.035	1204.0	1.23	3.13	55393.5	384.7	-	
2.3	0.043	1245.0	1.32	3,13	57224,2	397.4	1)	
2.5	0.047	1243,5	1.45	3.14	57081.0	396.4	1 (
2.8	0.053	1038.1	1.63	3.14	47567.7	330.3	1 1	
2.9	0.056	815.8	1.72	3.15	37346.0	259,3] (
3.2	0.060	703.1	1,85	3.15	32143,2	223.2] \	
	7.107 1.360 2.101	UNCONFIN	L ED COMPRESSI	VE STRENGTH	57224.2	397.4		
				AR STRENGTH		. 198.7		
Description	Gray SHALE	on the state of th			LL	~		
					PL	-	тесн	DW/DA
				1	PI		-	6/16/10
USCS		T	***************************************	1	*.*	L	CHECK	DA
uguð.	1	1					L. J. J. L. A. L.	P4.6

DESCRIPTION	LL	PL	PI	SAMPLE ID
Gray SHALE	-	•	-	B-116, C-20
	SAMPL	E TYPE	Core	75'

Note: Not tested in accordance with ASTM standards due to the length of the sample received.

SAMPLE DATA
Wet Density (pcf)

Dry Density (pcf)

Moisture Content

140.8	
 126.5	

TIME TO FAILURE (min)
STRAIN @ FAILURE (%)
TYPE OF FAILURE

2.3	
1,3	
Long, Splitting	

UNCONFINED COMPRESSIVE STRENGTH (psf) 57224.2
SHEAR STRENGTH (psf) 28612.1

093-94479 REPUBLIC/SOIL BORING PLAN/TX TECH DW/DA

DATE 6/16/10

CHECK BA

REVIEW AK

	UNCONFI	NED COMP		STRENGTI FM D 7012-07			CORE SPECIMENS	
PROJECT TITLE REPUBLIC/SOIL BORING PLAN/TX PROJECT NO. 093-94479 REMARKS -		SAMPLE ID SAMPLE TYPE SAMPLE DEPTH		B-118R, C-10 Core 31.2 - 31.9				
SAMPLE DA	TA			WATER CO	NTENT	BEFORE	AF	TER
Height (in)		2.117	l			SHEAR		EAR
Diameter (in)		2,031				(entire)		rtial)
Height/Diamete	er Rintin	1.04		Tare No.]	
Arca (in ²)	. ,	3.24		Wt. Wet Soil &	Tare (em)	247,42	250	0.72
Volume (ft ³)		0.0040		Wt, Dry Soil &		221.26		5.10
Weight (gm)		247.42		Wt. Tare (gm)	(B.111)	0,00		.42
Weight (gin) Wei Density (pi	oft.	137.37		Wt. Moisture (g	in)	26.16		5.62
7	*,	122,84		Wt. Dry Soil (g		221,26	-	6.68
Dry Density (po		0.011		Moisture (%)	niy	11.82%		82%
Machine Speed	*	0.52		DEMISITURE (38)		11.0470	J	G4/0
Strain rate (%/n		L			, , , , , , , , , , , , , , , , , , ,	<u> </u>		
TIME	DEFLECT	FORCE	% STRAIN	Ac		IVE STRESS		
(min)	(inch)	(lbs)	(in/ln)	(in ¹)	(psf)	(psi)	4	
0.0	0.000	15.3	0.00	3.24 3.24	0.0 680.1	0.0 4.7	-	
0.1	0.001	18.5	0.13	3,24	822.6	5.7		
0.4	0.004	24.2	0.20	3.25	1072,2	7.4		
0.5	0.006	30.6	0.27	3,25	1356.9	9,4	TIME TO FAILURE (min) 5	5.9
0,6	0.007	38.7	0.34	3,25	1712.6	11.9	STRAIN @ FAILURE (%) 3	3.0
0,8	0,009	47.5	0.41	3.25	2103.6	14.6	TYPE OF FAILURE Long.	Splitting
0.9	0.010	56.4	0.48	3.26	2494.1	17.3		
1,0	0.012	65.2	0.55	3.26	2884.0	20.0		
1.2	0.013	74.1	0.68	3.26	3273.4 3662.2	22.7	-	
1.3 1.4	0.014	92.9	0.75	3.26	4099.0	28.5	FAILURE	
1.6	0.017	101.0	0.82	3.27	4451.0	30.9	SKETCH	
2.0	0.022	130.5	1.03	3.27	5739.4	39.9		
2.6	0.029	179.6	1,38	3,28	7873.0	54.7	1 11 1 1 / /1	
3.3	0.036	227.9	1.72	3.30	9956.1	69.1		
4.0	0.044	269.0	2.07	3.31	11709.2	81.3	1 1)//)//	
4.6	0.051	321.3	2.42	3,32	13937.9	96.8	4 1151//	
5.3	0.058	380.1	2,76	3.33	16429.4	114.1	4 1 1 1 1	
5.9	0.065	415.6 376.9	3.05 3.26	3.34	17908,3 16206,1	124,4 112,5	-	
6.3 6.9	0.069	322.2	3.61	3.36	13801.9	95.8		
7.6	0.084	289.1	3.96	3.37	12342.8	85,7	1 \	
8.2	0.091	182,0	4.28	3.38	7744.0	53.8	1	
				IVE STRENGTH		124.4		
			SHE	AR STRENGTH	8954.2	62.2]	
Description	Gray SANDS	TONE			LL PL		тксн	DA.
					P			
		T-	and the state of t	J	P	'L		4/10
USCS	·L							DA.
				-			REVIEW	ÁK

DESCI	LL	PL	PI	SAMPLE ID	
Gray SANDSTONE	-	-	-	B-118R, C-10	
		SAMPL	E TYPE	Core	31.2 - 31.9'
USCS	-				

Note: Non-ASTM due to the length of the sample received.

SAMPLE DATA

Wet Density (pcf) Dry Density (pcf)

Moisture Content

137.4
122.8
11.8%

TIME TO FAILURE (min) STRAIN @ FAILURE (%) TYPE OF FAILURE

5.9	
3,0	
Long, Splitting	

UNCONFINED COMPRESSIVE STRENGTH (psf)
SHEAR STRENGTH (psf)

17908.3 8954.2

893-94479 REPUBLIC/SÖIL BORING PLAN/TX
 TECH
 DA

 DATE
 8/4/10

 CHECK
 DA

 REVIEW
 AK

UNCONFINED COMPRESSIVE STRENGTH OF INTACT ROCK CORE SPECIMENS ASTM D 7012-07, METHOD C B-118R, C-16 REPUBLIC/SOIL BORING PLAN/TX SAMPLE ID PROJECT TITLE PROJECT NO. 093-94479 SAMPLE TYPE Core SAMPLE DEPTH 60.0 - 61.25 REMARKS WATER CONTENT BEFORE AFTER SAMPLE DATA SHEAR SHEAR Height (in) 4.572 2.019 (entire) (partial) Diameter (in) Tare No. Height/Diameter Ratio 2.26 545.50 Area (in²) 3.20 Wt. Wet Soil & Tare (gm) 552.77 Volume (ft¹) Wt. Dry Soil & Tare (gm) 486.34 493.73 0.0085 Wt. Tare (gm) 0.00 545.50 8.41 Weight (gm) 59.16 Wet Density (pcl) 141.91 Wt. Moisture (gm) 59.04 126.52 Wt. Dry Soil (gm) 486.34 485.32 Dry Density (pcf) Machine Speed (in/min) 0.022 Moisture (%) 12.17% 12.17% Strain rate (%/min) 0.48 % STRAIN COMPRESSIVE STRESS TIME DEFLECT FORCE Ac (in/in) (ini) (inch) (psf) (lbs) (psi) (min) 0.0 0.000 0.0 0.00 3.20 0.0 0.0 0.03 543.6 3.8 3.20 0.1 0.001 12.1 0.07 3,20 615.8 4.3 0.1 0.003 13,7 3.21 4.3 0.2 0.005 13.7 0.11 615.5 TIME TO FAILURE (min) 0.007 15.3 0.15 3,21 687:6 4.8 3,4 0.3 0.009 26.6 0.19 3.21 1193.2 8.3 STRAIN @ FAILURE (%) 1.7 0,4 0.23 3.21 3035.7 21.1 TYPE OF FAILURE Shear 0.011 67.7 0.5 0.6 0.012 129.7 0,27 3,21 5816,4 40,4 58.7 0.31 3.21 8450.1 0,6 0.014188.5 0.35 3.21 10251.1 71.2 0.7 0.016 228.7 0.8 0.018 244.0 0.39 3.21 10932.9 75.9 12082.6 83.9 FAILURE 269.8 0.43 3,22 0.9 0.020 SKETCH 1.0 0.022 278,7 0.47 3.22 12474.3 86.6 372.9 0.54 3.22 16680.0 115.8 0.025 1.1 1.5 0.034 740.E 0.75 3.23 33041.0 229.5 1089.7 48549,0 337.1 0.95 3.23 2.0 0.043 2:4 0.052 1403,7 1.15 3.24 62411.9 433.4 520.6 2.8 0.062 1689.6 1.35 3.25 74971.3 1938.5 1.55 3.25 85840.9 596.1 0.071 3.2 3.4 0.076 2017.4 1.65 3:26 89240,0 619.7 1.69 3.26 77809,0 540,3 0.077 1759.7 3,5 3.5 0.078 464.7 1.70 3.26 20545,6 142.7 3,27 8417.7 58,5 1.95 4.0 0.089190,9 2.31 3.2B 7679.3 53.3 4.8 0.106 174.8 UNCONFINED COMPRESSIVE STRENGTH 89240.0 619.7 44620.0 SHEAR STRENGTH 309.9 Description Gray SHALE 1.1. TECH 121 DA DATE 8/4/10 CHECK DA USCS REVIEW

	DESCRIPTION	LL	PL	PI	SAMPLE ID
Gray SHALE		-	-	-	B-118R, C-16
		SAMPL	E TYPE	Core	60.0 - 61.251
USCS	-				

SAMPLE DATA Wet Density (pcf) Dry Density (pcf) Moisture Content

141.9	
126.5	
12.2%	

TIME TO FAILURE (min) STRAIN @ FAILURE (%) TYPE OF FAILURE

3,4	
1.7	
Shear	

UNCONFINED COMPRESSIVE STRENGTH (psf)

89240.0 SHEAR STRENGTH (psf) 44620.0

093-94479 REPUBLIC/SOIL BORING PLAN/TX

1	
TECH	ĐΑ
DATE	8/4/10
CHECK	DA
REVIEW	АK

	UNCONFI	NED COMI		STRENGTI IM D 7012-07			CORE SPECIMENS
PROJECT TITLE REPUBLIC/SOIL BORING PLAN/IN PROJECT NO. 693-94479 REMARKS -			SAMPLE ID SAMPLE TYPE SAMPLE DEPTH			B-119R, C-13 Core 65'	
SAMPLE DA Height (in) Diameter (in) Height/Diamete Aren (in²) Volume (ft¹) Weight (gm)		3,991 1,954 2.04 3.00 0.0069 439,12		WATER COL Tare No. Wt. Wet Soil & Wt. Dry Soil & Wt. Turc (gm)	Tare (gm)	BEFORE SHEAR (entire) 	AFTER SHEAR (partial)
Wet Density (p Dry Density (po Muchine Speed Strain rate (%/r	ef) -(in/min)	139.71 122.45 0.019 0.48	% STRAIN	Wt. Moisture (g Wt. Dry Soil (g Moisture (%)	m)	54.25 384.87 14.10%	50.92 361.24 14.10%
(min) 0.0 0.1 0.2 0.2 0.3 0.4 0.5 0.6 0.6 0.7 0.8 0.9 0.9 1.3 1.6 2.0 2.4 2.7 3.1 3.5 3.7 4.1 4.3 4.4	(inch) 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,011 0,012 0,014 0,015 0,016 0,018 0,025 0,031 0,037 0,045 0,052 0,060 0,067 0,071 0,077 0,081	(lbs) 0.0 58.0 96.7 132.1 173.2 210.2 236.0 246.4 249.7 253.7 272.2 282.7 314.1 461.5 558.1 605.6 642.7 677.3 727.2 769.1 782.8 716.8 544.4 47.5	(in/in) 0.00 0.05 0.09 0.12 0.16 0.20 0.24 0.28 0.31 0.34 0.38 0.41 0.45 0.62 0.78 0.94 1.13 1.29 1.49 1.69 1.78 1.94 2.04 2.10 ED COMPRESSI	(in') 3,00 3,00 3,00 3,00 3,00 3,00 3,01 3,01	(psf) 0.0 2783.4 4637.1 6335.0 8302.0 10073.9 11304.4 11801.3 11951.7 12140.8 13021.9 13518.4 15014.5 22022.8 26592.3 28810.4 30511.6 32104.1 34401.5 36309.3 36921.5 33753.3 25610.2 2234.0	(psi) 0.0 19.3 32.2 44.0 57.7 70.0 78.5 82.0 83.0 84.3 90.4 93.9 104.3 152.9 184.7 200.1 211.9 222.9 238.9 252.1 256.4 234.4 177.8 15.5 256.4 128.2	TIME TO FAILURE (noin) STRAIN @ FAILURE (%) TYPE OF FAILURE FAILURE SKETCH
Description USCS	Gray Sundy S	HALE			1.L PL PI		TECH DW/DA DATE 6/16/10 CHECK DA REVIEW AK

ı	DESCRIPTION	LL	PL	Pf	SAMPLE ID	
Gray Sandy SHA	LE	•	,	-	B-119R, C-13	
		SAMPL	E TYPE	Core	65*	
USCS	•					

SAMPLE DATA
Wet Density (pef)
Dry Density (pcf)

Moisture Content

139.7 122.5 14.1% TIME TO FAILURE (min)
STRAIN @ FAILURE (%)
TYPE OF FAILURE

3.7 1.8 SHEAR

UNCONFINED COMPRESSIVE STRENGTH (pst)
SHEAR STRENGTH (pst)

36921.5 18460.7

093-94479 REPUBLIC/SOIL BORING PLAN/TX TECH DW/DA

DATE 6/16/18

CHECK DA

REVIEW AK

	UNCONFI	NED COMP		FTRENGT1 FM D 7012-07			CORE SPECIMENS	
PROJECT T	PT 1 E	pertuic (SOI)	BORING PLANAX		SAMPLE ID		B-120R, C-11	
			94479		SAMPLE TY		Core	
PROJECT N	o.						38'	
REMARKS	KS				SAMPLE DE	rin	28	
AMPLE DA	TA			WATER CO	NTENT	BEFORE		AFTER
leight (in)		3.676				SHEAR		SHEAR
iaineter (in)		2.046				(entire)		(partial)
leight/Diamete	e Ratio	1.80		Tare No.			1 г	
rea (in ²)	1 ((011))	3,29		Wt. Wet Soil &	Tore I and	481,99	†	488.77
olume (ft ³)		0.0070		Wt. Dry Soil &		458,48		
					rate (Sm)		-	465,34
veight (gm)	ő	481.99		Wt. Tare (gm)		0.00	-	8,32
Vet Density (p		151.86		Wt. Moisture (g		23.51	-	23.43
bry Density (po		144.45		Wt. Dry Soil (g	m)	458,48		457.02
Anchine Speed	(in/min)	0.019		Moisture (%)		5.13%		5.13%
train rate (%/n	nin)	0.52						
TIME	DEFLECT	FORCE	% STRAIN	Ac	COMPRESS	IVE STRESS		
(min)	(inch)	(lbs)	(in/in)	(in²)	(psf)	(psi)	-	
0.0	0.000	0.0	0.00	3.29	0.0	0.0		
0.1	0.003	25.0	0.07	3.29	1092.9	7.6		
0.2	0.004	45.1	0.11	3,29	1973.1	13.7		
0,3	0.006	79.7	0.15	3,29	3486.7	24,2		
0.4	0.007	119.2	0.20	3,29	5210.5	36.2	TIME TO FAILURE (min)	3.3
0.4	0.008	145.0	0.22 0.25	3,30	6335.3 7424.2	44,0 51.6	STRAIN @ FAILURE (%) TYPE OF FAILURE	1.7 SHEAR
0.5	0.009	186.0	0.28	3,30	8125.9	56,4	LITTE OF EMILIANCE	DITEAR
0.6	0.017	198.1	0.30	3.30	8651.3	60,1	1	
0.6	0.012	217.5	0.33	3.30	9492.9	65.9	1	
0.7	0.013	225,5	0.35	3,30	9841.8	68.3	1	
0,8	0.015	252.9	0.41	3.30	11030.6	76.6	FAILURE	
1.0	0.020	351.9	0.54	3:31	15331.0	106.5	SKETCH	
1.3	0.025	631,4	0.67	3.31	27468.9	190.8		
1,5	0.029	1047.0	0.80	3,31	45490.3	315.9	4 1 /	
1.8	0,034	1633.3	0.93	3,32	70871.5	492.2	-	
2.0	0.039	2341.2	1.06	3,32	101455.4	704.6	-	
2.3	0.044	3168.3 4421.4	1.19	3,33	137119.1	952.2 1326.5	-	
3.0	0.050 0.056	5527.9	1.53	3.34	238404.3	1655.6	1 1	
3.3	0.062	6003.9	1.69	3.34	258523.8	1795.3	1 1	
3.3	0.064	5834.8	1.73	3.35	251134.1	1744.0	1 /	
3.4	0.964	1187.9	1.74	3.35	51123.4	355.0	1 1	
3,5	0.067	947.9	1,83	3,35	40755.2	283.0		
·····	***************************************	unconfin	ED COMPRESS	VE STRENGTH	258523.8	1795,3	The Control of the Co	
			SHE	AR STRENGTH	129261.9	897.7]	
Description	Brown SAND	STONE		***************************************	LI		1	
		•			PÍ		тесн	DW/DA
						-	-1 <u> </u>	
USCS	-			1	P	-	THECK CHECK	6/16/10
								DA

Γ	ESCRIPTION		LL	PL	PI	SAMPLE 1D
Brown SANDSTO	NE		-	-	-	B-120R, C-11
		SAMPL	E TYPE	Core	38'	
uscs						

Note: Not tested in accordance with ASTM standards due to the length of the sample received.

SAMPLE DATA

Wet Density (pcf) Dry Density (pcf)

Moisture Content

151,9	
144.5	

TIME TO FAILURE (min)
STRAIN @ FAILURE (%)
TYPE OF FAILURE

,		
	3,3	
	1.7	
	SHEAR	

UNCONFINED COMPRESSIVE STRENGTH (psf)
SHEAR STRENGTH (psf)

258523.8 129261.9

093-94479

REPUBLIC/SOIL BORING PLAN/TX

TECH DW/DA

DATE 6/16/19

CHECK DA

REVIEW AK

UNCONFINED COMPRESSIVE STRENGTH OF INTACT ROCK CORE SPECIMENS ASTM D 7012-07, METHTOD C PROJECT TITLE REPUBLIC/SOIL BORING PLAN/TX SAMPLE ID B-120R, C-13 PROJECT NO. 093-94479 SAMPLE TYPE Core REMARKS SAMPLE DEPTH 551 WATER CONTENT SAMPLE DATA BEFORE AFTER 3,939 SHEAR Height (in) SHEAR Diameter (in) 1.953 (entire) (partial) Height/Diameter Ratio 2.02 Tare No. Area (in2) Wt. Wet Soil & Tare (gm) 3.00 444.11 437.47 Volume (ft³) 0.0068 Wt. Dry Soil & Tare (gm) 393.49 388.56 Wt. Tare (gm) 444.11 0.00 Weight (gm) 8,39 Wt. Moisture (gm) Wet Density (pcf) 143.31 50.62 48.91 Dry Density (pcf) 126.98 Wt. Dry Soil (gm) 393,49 380.17 0.019 Moisture (%) 12.87% Machine Speed (in/min) 12.87% Strain rate (%/min) 0.48 TIME DEFLECT FORCE % STRAIN Ac COMPRESSIVE STRESS (lbs) (in/in) (min) (ln^i) (inch) (psf) (psl) 0.000 0.0 0.00 3,00 0.0 0.0 0.0 29.0 0.05 3.00 1393.3 0.002 9,7 0.1 58.0 0.10 3.00 2784.6 19.3 0.2 0.004 0.17 0.3 0.007 104.7 3.00 5024,4 34.9 0.5 0.009 156.2 0.23 3.00 7492.9 52.0 TIME TO FAILURE (min) 3.9 0.6 0.012 207.0 0.30 3.00 9919.1 68,9 STRAIN @ FAILURE (%) 1,9 237.6 0.35 3.01 11380.0 79.0 TYPE OF FAILURE 0.7 0.014 SHEAR 0.016 252.9 0.40 3.01 12107.5 84.1 0.8 259.3 0,45 3.01 12409.8 86.2 0.9 0.018 269.8 0.50 12904.6 89.6 1.0 0.020 3.01 312.5 0.55 3.01 14938.7 103.7 1.1 0.022 0.59 3.01 17779.3 123.5 FAILURE 1.2 0.023 372.1 1.3 0.025 421,2 0.63 3.01 20118,4 139.7 SKETCH 480.8 0.68 3.02 22954.0 159.4 1.4 0.027 1.5 0.029 533.2 0.73 3.02 25440,9 176.7 584.7 0.78 3.02 27886.6 193.7 1.6 0.931 0.036 690.2 0.92 3.02 32870.5 228.3 1,9 2.4 0.046 804.6 1.17 3.03 38223,7 265,4 1.41 3.04 43321.3 300.8 2.9 0.055 914.1 3.4 0.065 1026.8 1.65 3.05 48544.5 337,1 3.9 1121.0 1.90 3,05 52859.8 367.1 0.075 4.2 0.079 1040.5 2.01 3.06 49011.3 340.4 257.8 2.04 3.06 37126.2 788.4 4.2 0.080 4.5 0.085 2.19 3.06 2499.3 17.4 UNCONFINED COMPRESSIVE STRENGTH 52859.8 367.1 SHEAR STRENGTH 26429.9 183.5 Description Gray Sandy SHALE LL PL TECH DW/DA DATE 6/16/10 USCS CHECK ĐΛ REVIEW AK

DESCRIPTION			LL	SAMPLE ID		
Gray Sandy SH	ALE		-	-	-	B-120R, C-13
			SAMPL	E TYPE	Core	551
USCS	-					

SAMPLE DATA Wet Density (pef) Dry Density (pef) Moisture Content

143.3 127.0 12.9% TIME TO FAILURE (min) STRAIN @ FAILURE (%) TYPE OF FAILURE 3.9 1.9 SHEAR

UNCONFINED COMPRESSIVE STRENGTH (psf) SHEAR STRENGTH (psf)

52859.8 26429.9

093-94479 REPUBLIC/SOIL BORING PLAN/TX TECH DWDA

DATE 6/16/10

CHECK DA

REVIEW AK

UNCONFINED COMPRESSIVE STRENGTH OF INTACT ROCK CORE SPECIMENS ASTM D 7012-07, METHOD C PROJECT TITLE REPUBLIC/SOIL BORING PLAN/TX SAMPLE ID B-121R, C-15 SAMPLE TYPE PROJECT NO. 093-94479 Core SAMPLE DEPTH 56.4 - 57.1 REMARKS WATER CONTENT BEFORE SAMPLE DATA AFTER Height (in) 4,657 SHEAR SHEAR (entire) Diameter (in) 1,994 (partial) Height/Diameter Ratio 2.34 Tare No. Area (in²) Wt, Wet Soil & Tare (gm) 521.55 3.12 526.86 455,43 Volume (ft³) Wt. Dry Soil & Tare (gm) 0.0084 461.13 Wt. Tare (gm) Weight (gm) 521.55 0.00 8.42 Wet Density (pcf) 136.56 Wt. Moisture (gm) 66.12 65.73 Wt. Dry Soil (gm) Dry Density (pcf) 119,25 455,43 452.71 Moisture (%) 14.52% 14.52% Machine Speed (in/min) 0.023 0.49 Strain rate (%/min) TIME DEFLECT FORCE % STRAIN Ac COMPRESSIVE STRESS (in/in) (in^2) (mln) (inch) (lbs) (psf) (psi) 0.000 0.0 0.00 3.12 0.0 0.0 0.0 0.0 0.001 32.2 0,02 3.12 1485.4 10.3 58.0 0.06 3.12 2672.6 18.6 0.1 0.003 0.006 124.8 0.12 3.13 5749.2 39.9 0.2 3.13 0.18 8563.4 59.5 TIME TO FAILURE (min) 0.4 800,0 186.0 3.6 208.6 0.21 3.13 9598.2 66.7 STRAIN @ FAILURE (%) 0.4 0.010 1.8 0.25 10632,3 73,8 TYPE OF FAILURE 0.5 0.011 231.1 3.13 Shear 0.013 239.2 0.28 3.13 10999.0 76.4 0.6 0.6 0.015 255,3 0.31 3.13 11735.8 R1.5 0.35 3.13 12250.3 85.1 266.6 0.7 0.016 0.018 286.7 0.38 3.13 13171.1 91.5 0.8 FAILURE 0.41 14350.1 99.7 312,5 3.14 8.0 0.019 402.7 0.51 3.14 18474.1 128.3 SKETCH 1.0 0.024 175.7 25304.7 0.67 3.14 1,4 0.031 552.5 1.7 0.039 651.5 0.84 3.15 29791.9 206.9 2.0 0.047 745.8 1.00 3.15 34044.1 236.4 840.0 1.17 3.16 38281,9 265.8 0.0542.4 0.062 927.8 1,33 3.16 A2212.0 293,1 2.7 45617.8 316.8 1.50 3.17 3.0 0.070 1004.3 1070.3 1.66 3.18 48534.4 337.0 3,4 0.077 3.18 1.79 49927.6 346.7 3.6 0.084 1102.5 3.8 0.088 836.0 1.89 3.18 37819,1 262,6 171.9 4.0 0.093 547.6 2.00 3.19 24748.3 2.10 3.19 5781.3 40,1 0.098 128.1 4.2 UNCONFINED COMPRESSIVE STRENGTH 49927.6 346.7 SHEAR STRENGTH 24963.8 173.4 Description Dark Gray SHALE LL TECH PL DA DATE 8/4/10 CHECK $\widetilde{D} A$ USCS REVIEW

Г	DESCRIPTION			Li	PI	SAMPLE ID	
D	nrk Gray SHALI	5		•	*	*	B-121R, C-15
				SAMPL	E TYPE	Core	56.4 - 57.11
	USCS	in the second					

SAMPLE DATA
Wet Density (pcf)
Dry Density (pcf)

Molsture Content

136,6 119,2 14,5% TIME TO FAILURE (min) STRÁIN @ FAILURE (%) TYPE OF FAILURE 3.6 1.8 .Shear

UNCONFINED COMPRESSIVE STRENGTH (psh) SHEAR STRENGTH (psh)

49927.6 24963.8

093-94479

REPUBLIC/SOIL BORING PLAN/TX

TECH DA
DATE SMITS
CHECK DA
REVIEW AK

UNCONFINED COMPRESSIVE STRENGTH OF INTACT ROCK CORE SPECIMENS ASTM D 7012-07, METHOD C PROJECT TITLE B-123, C-20 REPUBLIC/SOIL BORING PLAN/TX SAMPLE ID SAMPLE TYPE PROJECT NO. 093-94479 Core SAMPLE DEPTH 82.8 - 83.31 REMARKS SAMPLE DATA WATER CONTENT BEFORE AFTER 2.769 SHEAR SHEAR Height (in) Diameter (in) 2,003 (entire) (partial) Tare No. Height/Diameter Ratio 1.38 Area (in²) 3,15 Wt. Wet Soil & Tare (gm) 357.39 361.73 Volume (ft¹) 0.0050 Wt. Dry Soil & Ture (gin) 341.60 346.12 Wt. Tare (gm) 0,00 8.34 Weight (gm) 357.39 Wt. Moisture (gm) 15.79 15.61 Wet Density (pef) 155.97 341.60 Wt. Dry Soil (gm) 337.78 Dry Density (pcf) 149.08 4.62% Moisture (%) 4.62% Machine Speed (in/min) 0.014 Strain rate (%/min) 0.51 COMPRESSIVE STRESS FORCE % STRAIN Ac TIME DEFLECT (min) (inch) (lbs) (in/in) (\ln^3) (psf) (psl) 0.00 3.15 0.0 0.000 0.0 0.0 0.0 0.1 0.001 16.1 0.04 3.15 735.9 5.1 809.1 5.6 0.2 0.002 17.7 0.08 3,15 0.004 23,4 0.13 3.16 1066.1 7.4 0,3 TIME TO FAILURE (min) 0.3 0.005 48.3 0.18 3.16 2204.8 15.3 5,1 98.3 0.23 3.16 4480.2 31.1 STRAIN @ FAILURE (%) 2.6 0.4 0.006 TYPE OF FAILURE 0.6 0.008 174,8 0.29 3.16 7964.1 55.3 Long. Splitting 3.16 10343.0 71.8 0.35 0.7 0.010 227.1 0.40 10850,3 75.3 0,8 0.011 238.4 3.16 82.9 0.9 0.013 262,6 0,46 3.17 11942.8 271.4 0.52 3.17 12338.5 85.7 1,0 0.014 FAILURE 1.1 0.016 316.5 0.58 3.17 14380,3 99.9 SKETCH 1075.2 0.84 3,18 48722.1 338.3 1.7 0.023 2.2 0.031 2366.1 1.14 3.19 106899.8 742.4 3.20 189513.0 1.43 1316.1 2.8 0,040 4207.2 6354.2 1.73 3.21 285368.7 1981.7 0.048 3.4 3.22 2694.5 4.0 0.056 8665.6 2,02 388005.7 3395.5 10953.0 2.32 3.23 488948.1 4.6 0.064 4.8 0.068 11915.0 2.44 3,23 531204.1 3688.9 2.59 3.23 568799.4 3950.0 12777.0 0.072 5.1 5.1 0.072 9599.8 2.60 3.24 427284.1 2967.3 3,24 313.3 2.70 45120.9 5.3 0.075 1014.7 2,82 3.24 46887.6 325.6 5.6 0.078 1055.8 5.8 0.081 1003.5 2.92 3.25 44522.5 309,2 UNCONFINED COMPRESSIVE STRENGTH 558799,4 3950.0 SHEAR STRENGTH 284399,7 1975.0 Description Gray SHALE LĮ, TECH DA DATE 8/4/10 CHECK USCS ÐΆ REVIEW

DESCRIPTION	LL	PL	PI	SAMPLE ID
Gray SHALE	•	-		B-123, C-20
	SAMPL	E TYPE	Core	82.8 - 83.31

Note: Non-ASTM due to the length of the sample received.

SAMPLE DATA

Wet Density (pcf) Dry Density (pcf)

Maisture Content

156.0	
149.1	,
4,6%	

TIME TO FAILURE (min) STRAIN @ FAILURE (%) TYPE OF FAILURE

	5,1	
	2.6	
,	Long, Splitting	

UNCONFINED COMPRESSIVE STRENGTH (psf) 568799.4
SHEAR STRENGTH (psf) 284399.7

093-94479 REPUBLIC/SOIL BORING PLAN/TX TECH DA

DATE #406
CHECK DA

REVIEW AR

1	UNCONFI	NED COMF			H OF INTA , METHOD		CORE SPECIMENS	
PROJECT TITLE REPUBLIC/SOIL BORING PLAN/TX PROJECT NO			SAMPLE ID SAMPLE TY SAMPLE DE	/PE	B-129, C-12 Core 40.7 - 41,1'			
SAMPLE DA Height (in) Dinmeter (in) Height/Dinmete Area (in ²)		2.701 1.910 1.41 2.87		WATER CO		BEFORE SHEAR (entire)] F	AFTER SHEAR (partial)
Volume (ft ¹) Weight (gm) Wet Density (po Dry Density (po Machine Speed	:f)	0.0045 302.65 148.92 136.63 0.014		Wt. Dry Soil & Tare (gm) Wt. Tare (gm) Wt. Moisture (gm) Wt. Dry Soil (gm) Moisture (%)		277,69 0.00 24,96 277,69 8,99%		369,57 284,73 8,39 24,84 276,34 8,99%
Strain rate (%/n TIME (min) 0.0	nin) DEFLECT (inch) 0.000	0.52 FORCE (lbs)	% STRAIN (In/in)	Ac (in¹) 2.87	COMPRESS (pat) 0.0	(psi)		
0,2 0.5 0.8	0.003 0.008 0.011 0.015	12.9 15,3 20.9 26.6	0,12 0,28 0,42 0,55	2.87 2.87 2.88 2.88	647.0 767.3 1048.0 1328,5	4,5 5,3 7,3 9,2	TIME TO FAILURE (min)	9.1
1.3 1.5 1.7 1.9	0.018 0.021 0.024 0.026	33.0 37.9 44.3 50.7	0.68 0.78 0.87 0.97	2.88 2.89 2.89 2.89	1648.2 1888.0 2207.0 2525.4	11.4 13.1 15.3 17.5	STRAIN @ FAILURE (%) TYPE OF FAILURE	4.7 .ong. Splitting
2.0 2.2 2.4 3.1	0.029 0.031 0.034 0.043	55.6 62.0 68.5 94.2	1,06 1,16 1,25 1,59	2.90 2.90 2.90 2.91	2763.2 3080.9 3397.6 4660.6	19.2 21.4 23.6 32.4 45.7	FAILURE SKETÇII	-
4.0 4.9 5.8 6.7 7.6	0.056 0.069 0.081 0.094 0.107	133.7 176.4 218.3 253.7 280.3	2.06 2.54 3.01 3.49 3.96	2.93 2.94 2.95 2.97 2.98	6580.3 8639.5 10638.7 12305.1 13527;4	45./ 60.0 73.9 85.5 93.9		er Helengeren von der er von der der von der
8.6 9.1 9.7	0.126 0.128 0.135 0.148	297.2 304.4 294.8 268.2	4.44 4.74 5.01 5.49	3.00 3.01 3.02 3.03	14273.6 14573.6 14072.0 12739.4	99.1 101.2 97.7 88.5		ere en indexes de la company de la company de la company de la company de la company de la company de la compa
11,5 12:4	0.161 0.174	260.1 235.2	5.96 6.43 CD COMPRESSI	3.05 3.06	12294.5 11059.6 14573.6	85.4 76.8 101.2 50.6		
Description	Gray SANDS	TONE.	SHE	AN OTHER PLAN	1200.8 UI PI P		TECH ĐATE	DA 8/5/10
uscs	64	1		1		<u> </u>	CHECK	DA ÁK

City of Arlington Landfill MSW Permit No. 358B Part III, Attachment 4 Geology Report

UNCONSOLIDATED-UNDRAINED TRIAXIAL TEST RESULTS

Specimen Description Gray, Interbedded, SHALE and SANDSTONE							
LL -	PI	-	LI	-	USCS	-	

Depth (fi)	24.0	06-1 D (0)	0000
Debtit (II)	31,2	Confining Pressure (psf)	3928
Specimen Helght (Inch)	4.1	Strain Rate (%/min)	1.0
Specimen Dlameter (inch)	2.0	Peak Deviator Stress (psf)	12294
Initial Specimen Welght (g)	443.1	Axlal Strain at Poak Stress (%)	4.4
Molst Unit Weight (pcf)	131.5		
Initial Water Content (%)	13		_/\
			~ ·

Project Tille City of Arlington Landfill
Project Number 073-9407711
Sample Type Core Barrel

8-105

C-10

Initial Dry Unit Weight (pcf)

Failure Sketch

Sample ID

Comments

Performed by	PN		
Date	27-Dec-10		
Cfreck	SBK		
Paulau	DCM		

City of Arlington Landfill MSW Permit No. 358B Part III, Attachment 4 Geology Report

CONSOLIDATED UNDRAINED WITH PORE PRESSURES TRIAXIAL TEST RESULTS

Golder Associates

Golder Associates

Golder Associates

Golder Associates

Golder Associates

Golder Associates

CONSOLIDATION TEST RESULTS

CONSOLIDATED-UNDRAINED WITH PORE PRESSURES TRIAXIAL TESTS RESULTS

Figure 4-E.10

11 man 11

DIRECT SHEAR TEST RESULTS

Permit Issued: February 12, 2014

CONSOLIDATION TESTS RESULTS

