

Project No. 3086-352-11-03 December 16, 2021

Mr. Steve Odil, P.E. MC-124 Municipal Solid Waste Permits Section Texas Commission on Environmental Quality P.O. Box 13087 Austin, TX 78711-3087

Re: Response to Comments – Leachate Phyto Utilization System

BVSWMA Rock Prairie Road Landfill - TCEQ Permit No. MSW-1444C

Brazos County, Texas

Tracking No. 26642845, RN 100830090/CN 600340194

Dear Mr. Odil:

On behalf of Brazos Valley Solid Waste Management Agency, Inc. (BVSWMA), please find enclosed one original and one copy of the replacement pages for the referenced temporary authorization. The attached replacement pages were developed to incorporate comments included in your notice of deficiency e-mail dated October 27, 2021.

This response letter contains each comment identified by the TCEQ (in bold) and a response to each.

1. The modification report includes data and discussion to demonstrate that the use of Leachate Phyto-Utilization System has not contaminated soils in the Final Cover System, on which the Leachate Phyto-Utilization System is located. Results for organics are below detection levels, and most metals are below their calculated 95% upper tolerance levels (UTL), provided in the modification request. Chromium levels exceed the corresponding UTL but are below the highest result for chromium collected from outside the treatment area. However, six reported mercury concentrations exceeded the corresponding UTL, and any concentration reported for samples from outside the treatment area. Explain why these mercury results do not indicate that the treatment process has contaminated underlying soil.

Response:

Metals are naturally ocurring in soils at varying concentrations.

According to EPA published information (EPA, Ground Water Issue, Behavior of Metals in Soils, October 1992), ambient metals concentrations in soils can be highly variable and change over time due to numerous factors and interrelated processes

Mr. Steve Odil December 16, 2021

(e.g., soil type and texture, pH, salinity, weathering, redox potential, ion exchange capacity, degree of saturation, etc.). The mobility of metals in soil often increases when in-situ sediments are physically disturbed and reworked for fill and cover applications.

According to EPA published data, the average concentration ranges of chromium and mercury in soils are 1-1000 mg/kg and 0.01-0.3 mg/kg; respectively.

Four sample points (B2, B3, B4, and B7) had reported total chromium and mercury concentrations greater than their respective 95% UTL concentrations. However, none of the these intitial apparent exceedances were verified by the subsequent sampling event results. The insitu control sample C1 also exhibited total chromium concetrations above the computed 95% UTL in addition to being the highest total chromium concentration among all collected soil samples to-date.

While chromium and mercury have been detected in individual soil sampling results with reported concentrations greater than the resctive 95% UTL, none of these intitial/apparent exceedances was reproducable. That is, none of the initial detections was confirmed through subsequent resampling. Because there have been no organic constituent detections and no metal constituents have been verifiably detected above their respective 95% UTL concentration, it does not appear that treatment process has contaminated soils.

2. It appears that the detection limits were used for calculations of UTLs for organics, silver, and cadmium. Use half the detection limit for these analyses.

Response:

The UTLs for organics, silver, and cadmium have been revised to reflect half of the detection limit.

3. The purpose of proposed soil sampling at the time of decommission of the Leachate Phyto-Utilization System is to confirm that the leachate treatment process has not contaminated soil in the underlying Final Cover System. Texas Risk Reduction Program Protective Concentration Levels (PCLs) are not appropriate for this determination. Follow protocols for closure that were provided for testing at the end of the temporary authorization period that base conclusions on background concentrations, not PCLs.

Response:

The protocols have been updated to be consistent with the protocols in this the temporary authorization (95% UTL).

4. Include costs on Table 12-2, Phyto-Utilization Area Closure Cost, for reporting for the recertification of soil final cover system components.

Response:

Table 12-2 has been updated to include recertification reporting.

During the course of your review, if you need additional information or have any questions, please call.

Sincerely,

Jason A. Edwards

Senior Engineer

Attachments: Attachment A – Replacement Pages (Redline/Strikeout Copy)

Attachment B - Replacement Pages (Clean Copy)

Attachment C - TCEQ-20650 Form

cc: TCEQ Region 9

Bryan Griesbach, BVSWMA Samantha Best, BVSWMA

PERMIT MODIFICATION

PHYTO-UTILIZATION SYSTEM

Prepared for

Brazos Valley Solid Waste Management Agency, Inc.

September 2021

Revised December 2021

Prepared by

Weaver Consultants Group, LLC

TBPE Registration No F-3727 6420 Southwest Blvd., Suite 206 Fort Worth, Texas 76109 817-735-9770

CONTENTS

1	INTF	RODUCTION	1
2	PHY'	TO-UTILIZATION SYSTEM	2
	2.1	Description of Existing Phyto-Utilization System Area	2
	2.2	Phyto-Utilization System Results	2
3	PERI	MIT MODIFICATION JUSTIFICATION	5

ATTACHMENT 1

Replacement Pages (Redline/Strikeout)

ATTACHMENT 2

Replacement Pages (Clean)

fast and healthy growth, quickly creating a fully established field as shown by the photographs on Figure 2.

In order to evaluate whether the phyto-utilization pad became contaminated by operation of the system, the TA and its extension required a soil sampling program to compare background concentrations with results after the TA periods. The TA required monitoring of the eight RCRA metals, Total Petroleum Hydrocarbons (TPH), and BTEX (Benzene, Toluene, Ethylbenzene, and Xylene). The background was to be determined using the 95 % upper tolerance limit (UTL) for each constituent. If the 95 % UTL background concentrations were exceeded at the end of the TA period, the landfill would be required to cease operation and decommission the system.

The first soil sampling event was conducted in September 2019 prior to leachate application for purpose of estimating background concentrations of constituents in cover soil. Soil samples were collected from nine points labeled B1 through B9, the locations of which are shown on Figure 1A. In accordance with the TA, the analytical results from these initial nine samples were used to calculate the 95% upper tolerance limits (UTL) to establish estimated background values for the tested constituents. A summary of the results and the 95% UTL is included on Table 1.

Four additional soil sampling events were conducted between July 2020 and January 2021 within the area of leachate application. Control samples were also collected from in-situ soils at four locations (C1 through C4) located outside of the irrigated area during three of these sampling events. The soils sampling results are summarized in the attached Table 2.

In summary, no TPH or BTEX constituents were detected above the Method Detection Limit (MDL) in any of the collected samples to date. Total arsenic, barium, chromium, lead, mercury, and selenium were detected at all sampled locations at low and varying concentrations, including in the control and background samples. Four sample points (B2, B3, B4, and B7) had reported total chromium and/or mercury concentrations greater than their respective UTL concentrations. Total chromium detected in control sample C1 outside of the irrigated area also exceeded the computed UTL in addition to exhibiting the highest total chromium concentration among all collected soil samples. None of the results show increasing or stable trends as a result of operation of the system and instead show significant variability between each sampling event. This variability indicates that the UTL method is not a reliable method to determine contamination by the system.

Alternatively, this permit modification proposes to implement a two-tiered compliance monitoring protocol that includes comparison of analytical results to a risk-based action level concentration the previously established 95% UTL coupled with verification resampling. An action level equal to 50 percent of the tier 1 Residential soil Protective Concentration Levels (PCLs) is proposed as an upper limit to the total metal concentrations detected in individual soil samples collected as part of routine soil

compliance monitoring. Additional information about this protocol is described in Appendix 5 of the revised Leachate and Contaminated Water Plan.	n

	TPH	0.0064 < 0.0064 < 0.0064 < 0.0064 < 57.0 < 57.0 < 57.0	0.0059 < 0.0059 < 0.0059 < 0.0059 < 64.0 < 64.0 < 64.0	0.0052 < 0.0052 < 0.0052 < 0.0052 < 64.0 < 64.0 < 64.0	0.0061 < 0.0061 < 0.0061 < 0.0061 < 57.0 < 57.0 < 57.0	0.0053 < 0.0053 < 0.0053 < 0.0053 < 62.0 < 62.0 < 62.0	0.0061 < 0.0061 < 0.0061 < 0.0061 < 61.0 < 61.0 < 61.0	0.0054 < 0.0054 < 0.0054 < 0.0054 < 56.0 < 56.0 < 56.0	0.0054 < 0.0054 < 0.0054 < 0.0054 < 55.0 < 55.0 < 55.0	0.0062 < 0.0062 < 0.0062 < 0.0062 < 58.0 < 58.0 < 58.0	
tilization Project	Silver Benzene	< 0.629 < 0.0064	< 0.560 < 0.0059	< 0.545 < 0.0052	< 0.525 < 0.0061	< 0.562 < 0.0053	< 0.574 < 0.0061	< 0.536 < 0.0054	< 0.515 < 0.0054	< 0.544 < 0.0062	
Table 1. Baseline Soil Samples for BVSWMA-RPRIF Phyto-Utilization Project	Mercury Selenium	0.0103 2.82	0.0195 1.83	0.0080 3.01	0.0135 2.30	0.0107 5.29	0.0118 3.04	0.0118 2.35	0.0081 1.06	0.0071 2.15	_
Baseline Soil Sampl	Lead	13.1 0.0	17.9 0.0	12.2 0.0	11.0 0.0	12.6 0.0	11.4 0.0	9.73 0.0	7.09 0.0	9.55 0.0	
	Chromium	6.42	6.57	4.24	4.45	5.90	4.01	4.51	2.88	3.00	
	Cadmium	< 0.629	< 0.560	< 0.545	< 0.525	< 0.562	< 0.574	< 0.536	< 0.515	< 0.544	
	Barium	88.3	736	711	450	1,610	545	421	83.6	438	
	Arsenic	_	5.20		_	_		_	_	3.23	
		mg/Kg									
	Sample ID	PS1900	PS1901	PS1902	PS1903	PS1904	PS1905	PS1906	PS1907	PS1908	
	Date	9/6/2019	9/6/2019	9/6/2019	9/6/2019	9/6/2019	9/6/2019	9/6/2019	9/6/2019	9/6/2019	
	Boring	81	B2	B3	B4	B5	98	B7	B8	89	

						-
7.67	3.031	1.633	9	ТРН	to mC35)	34.6
77.67	3.0	3.464		<u> </u>	(nC6 to nC12) (>nC12 to nC28) (>nC28 to mC35)	0.656 0.325 0.0074 0.0035 0.0074 0.0035 0.0074 0.0035 0.0074 0.0035 69.8 34.6 69.8 34.6 69.8
13.1	3.031	1.633	9	ТРН	to nC28)	34.6
0	3.0	3.464	0,		(>nC12 t	8'69
7.67	131	1.633	•	I HAI	nC12)	34.6
0.00	3.031	3.464		i i		8'69
0.000	3.031	0.0002	•	İ	ylenes	0.0035
0.27. C.26. U.U.S C.00.3 C.00.3 C.00.3 C.00.3 C.3.1 S.3.5 C.3.1	3.0	0.016 0.000 0.0002 0.000 0.0002 0.000 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002			Toluene Ethyl-benzene Total Xylenes	0.0071
0.00	3.031	0.0002	9		enzene	0.0035
00000	3.0	0000		i	Ethyl-b	0.0071
2000	3.031	0.0002	•		iene	0.0035
0.000	3.0	0.000	0,		Tolu	0.0071
0.003	31	0.0002	_	i	tene	0.0035
00000	3.031	0000	01		Benzene	0.0071
1777	31	0.016		İ	/er	0.325
1000	3.031	0.034	5		Silver	9-99-0
	3.031	1.170	6	İ	mn	
	3.0	1.			Selenium	6.19
0.0112	3.031	0.004	•		λin	92
0.0	3.0	0.0	0,		Mercury	0.0226
0.11	3.031	366.	6	i	ead	20.70
	m	7			Le	50
4.00	3.031	1.363	6	! !	Chromium	.80
					Chro	
1777	.031	0.016	6		Cadmium	0.325
7/3.0	.9	0.034			Cad	9.656
7.000	3.031	461.390	6		Barium	908
_		_	_		œ l	
4.40	3.031	3.385	6		Arsenic	14.52
	k-value	Std Dev		i		(g/Kg)
	¥	Š	Samples (n)			% UTL (m
						Baseline 95% UTL
						8
						П

Mean value for Cadmium, Silver, and Organics assumed to be half the detection limit.

										Table 1.								
								Historical Soi	Samples for BV:	SWMA-RPRLF Phy	Historical Soil Samples for BVSWMA-RPRLF Phyto-Utilitation Project	ect						
i i	ć	Cample D	4			Cadmiu		3			į		į	;		ТРН	TPH	ТРН
pormig par	0/6/2010	DC1000	Sull's	Arsenic	Darium 00 3		Chromium	Lead	Mercury	Selenium		Benzene	Toluene	Ethyl-benzene	Total Xylenes	(nC6 to nC12)	(>nC12 to nC28)	(>nC28 to nC35)
1	7/9/2020	PS2000	mg/Kg	3.19	87.7	J 0.072	7.32	14.90	0.0119	1.01	J 0.069	< 0.0007 < 0.0007	× 0.0009	< 0.0010 < 0.0010	< 0.0064	< 57.0	< 57.0	< 57.0
	8/6/2020	PS2009	mg/Kg	3.30	375.0	J 0.149	4.42	10.60	0.0159	0.81	J 0.466	< 0.0007	< 0.0009	< 0.0010	< 0.0014	< 9.1	< 12.0	< 12.0
	10/14/2020	PS2022	mg/Kg	3.26	318.0	J 0.143	4.27	11.30	0.0168	J 0.55) 0.041	> 0.0006	< 0.0007	< 0.0009	< 0.0012	< 9.5	< 12.0	< 12.0
82	9/6/2019	PS1901	mg/Kg	5.20	236	< 0.560	6.57	17.9	0.0195	1.83	< 0.560	< 0.0059	< 0.0059	< 0.0059	< 0.0059	< 64.0	< 64.0	< 64.0
	7/9/2020	PS2001	mg/Kg	5.18	115	0.069 r	5.62	12.00		J 0.56		< 0.0007	< 0.0008	< 0.0010	< 0.0014		< 13.0	< 13.0
	8/6/2020	PS2010	mg/Kg	5.18	52	< 0.013	2.64	7.07		J 0.51	J 0.018			> 0.0006	< 0.0009	< 8.1	< 11.0	< 11.0
	10/14/2020	PS2023	mg/Kg	8.16	159	J 0.055	6.21	13.40	0,0422	J 0.55	J 0.026	< 0.0005	< 0.0007	< 0.0008	< 0.0011	< 8.1	< 11.0	< 11.0
B3	9/6/2019	PS1902	mg/Kg	3.27	711	< 0.545	4.24	12.2	0.0080	3.01	< 0.545	< 0.0052	< 0.0052	< 0.0052	< 0.0052	< 64.0	> 64.0	< 64.0
	7/9/2020	PS2002	mg/Kg	2.00	85.6	< 0.041	12.10	17.40	0.0199	1.47		< 0.0009		< 0.0012			< 17.0	< 17.0
	8/6/2020	PS2011	mg/Kg	4.32	27.0	> 0.036	7.30	12.10	0.0218	1.78	J 0.050	> 0.0006	< 0.0008	< 0.0009	< 0.0013	< 10.0	< 14.0	< 14.0
	10/14/2020	PS2024	mg/Kg	2.88	431.0	790.0	5.10	12.70	0.0120	0.78	J 0.035	< 0.0007	< 0.0008	< 0.0009	< 0.0013	< 10.0	< 14.0	< 14.0
B4	9/6/2019	PS1903	mø/Kø	2.65	450	< 0.525	4.45	11.0	0.0135	2 30	/ 0525	7 0 0061	7 0 0051	15000	15000			
\$	7/9/2020	PS2003	mg/Ke	5.06	1.130	0.116	7.60	13.0	0.0105	0.24	1 0 024		0.0001	< 0.0001	< 0.0061	< 57.0	< 57.0	6 57.0
	8/6/2020	PS2012	mg/Kg	2.89	553	J 0.039	5.51	8.0	0.0249	0.81	J 0.032	90000 >	0.0008	< 0.0009	< 0.0012	< 10.0	< 13.0	< 13.0
	10/14/2020	PS2025	mg/Kg	2.35	208	J 0.049	8.54	11.9	0.0221	1.28	J 0.074	> 0.0006	< 0.0007	< 0.0008	< 0.0011	8.8	< 12.0	< 12.0
30	010(13)0	004004	1//-	130	1 510	654.0												
S	9/6/2019	PS1904	mg/kg	3.00	1,610	< 0.362	5.90	12.6	0.0107	5.29		< 0.0053	< 0.0053	< 0.0053	< 0.0053	< 62.0	< 62.0	< 62.0
	8/6/2020	PS2016	me/Ke	2.87	93.0	0.038	3.89	6.4		0.23	0.021	> 0.0006	< 0.0007	< 0.0008	< 0.0012	4.00	< 11.0	< 11.0
	10/14/2020	PS2026	me/Ke	2.84	43.9	1 0 049	3.54	2.0			0.023	0.0008	0.000	0.0000	0.0011	4 6.3	4 10.0	0.11.0
			0	i	}			2			0.020			0.000	0.0010		0.01 >	< 10.0
B6	9/6/2019	PS1905	mg/Kg	3.93	545	< 0.574	4.01	11.4	0.0118	3.04	< 0.574	< 0.0061	< 0.0061	< 0.0061	< 0.0061	< 61.0	< 61.0	< 61.0
	7/9/2020	PS2008	mg/Kg	3.41	20	< 0.038	5.96	12.4	0.0124	06.0		< 0.0007	< 0.0013	< 0.0009	< 0.0008	> 9.8	< 13.0	< 13.0
	8/6/2020	PS2017	mg/Kg	4.50	507	J 0.054	2.94	12.5	0.0045	0.85	< 0.019	> 0.0006		< 0.0008	< 0.0011	< 9.0	< 12.0	< 12.0
	10/14/2020	PS202/	mg/Kg	79.7	401	0.049	3.74	12.7	0.0087	J 0.49	J 0.025	< 0.0005	< 0.0006	< 0.0008	< 0.0011	8.8	< 12.0	< 12.0
87	9/6/2019	PS1906	mg/Kg	2.95	421	< 0.536	4.51	9.73	0.0118	2.35	< 0.536	< 0.0054	< 0.0054	< 0.0054	< 0.0054	< 56.0	< 56.0	< 56.0
	7/9/2020	PS2006	mg/Kg	4.00	723	J 0.076	8.95	14.40	0.0467	0.82	J 0.056	< 0.0007	< 0.0008	< 0.0009	< 0.0013	9.6 >	< 13.0	< 13.0
	8/6/2020	PS2015	mg/Kg	2.49	130	J 0.051	4.15	8.01	0.0131	0.70	J 0.030	< 0.0005		< 0.0007	< 0.0010	< 7.8	< 10.0	< 10.0
	10/14/2020	F52028	mg/kg	3.41	/17	J 0.064	8.97	13.30	0.0214	0.97	7 0.077	9000'0 >	< 0.0007	< 0.0008	< 0.0012	< 9.0	< 12.0	< 12.0
88	9/6/2019	PS1907	mg/Kg	1.75	83.6	< 0.515	2.88	7.09	0.0081	1.06	< 0.515	< 0.0054	< 0.0054	< 0.0054	< 0.0054	< 55.0	< 55.0	< 55.0
	7/9/2020	PS2004	mg/Kg	3.29	249	J 0.164	6.16	13.4		J 0.39	J 0.031	< 0.0007	< 0.0009	< 0.0010	< 0.0015		< 14.0	< 14.0
	8/6/2020	PS2013	mg/Kg	4.11	376	J 0.092	3.42	14.3						< 0.0007	< 0.0009	< 9.1	< 12.0	< 12.0
	10/14/2020	P52029	mg/Kg	67.7	55	J 0.095	3.30	16.1	0.0081	7 0.50	< 0.019	> 0.0006	< 0.0007	< 0.0009	< 0.0012	> 9.4	< 12.0	< 12.0
B9	9/6/2019	PS1908	mg/Kg	3.23	438	< 0.544	3.00	9.55	0.0071	2.15	< 0.544	< 0.0062	< 0.0062	< 0.0062	< 0.0062	< 58.0	< 58.0	< 58.0
	7/9/2020	PS2005	mg/Kg	4.22	330	J 0.193	3.88	12.50		J 0.50	< 0.020	< 0.0007		< 0.0010	< 0.0014	< 10.0	< 13.0	< 13.0
	8/6/2020	P52014	mg/Kg	4.33	301	0.086	2.84	11.40	0.0089	1.13	J 0.021				< 0.0010	< 7.5	< 9.9	6.6 >
	10/ 14/ 2020	r32030	90/9	÷.	100	3 0.042	4.03	13.50	0.0109	0.66	0.020	> 0.0006	< 0.0007	> 0.0008	< 0.0011	9.8 >	< 11.0	< 11.0
Ū	8/12/2020	PS2018	mg/Kg	3.08	310) 0.113	3.96	8.42	0.0173	0.78	7 0.053	90000 >	70000 >	< 0.0008	< 0.0012	< 8.8	< 12.0	< 12.0
	2012/12/07	T T T T T T T T T T T T T T T T T T T	94.79			con n		3	60100	961	900	> 0.000/	s unung	< 0.000 ×	> 0.0033	c 11.0	< 14.0	< 14.0
a	8/12/2020	PS2019	mg/Kg me/Kg	4.82	663	1 0.173	4.74	14.20	0.0193	1.71	1 0.045	< 0.0007	80000 >	< 0.0009	< 0.0013	< 9.3	< 12.0	< 12.0
			9.79		2		1000		St. Th. 'n	7,07	1			/ n non/	oronio >	/// >	< 10.0	< 10.0
U	8/12/2020	PS2020	mg/Kg	2.28	133	0.00.0 1	5.11	6.45		0.69) 0.046	< 0.0005	90000 >	< 0.0007	< 0.0010	< 8.3	< 11.0	< 11.0
	10/14/2020	F32U33	8V/8H	77.7	2	7 0.031	4.90	8.97	0.0115	7 0.45	7 0.020	> 0.0005	9000.0 >	< 0.0007	< 0.0010	< 8.0	< 11.0	< 11.0
ಶ	8/12/2020	PS2021	mg/Kg	2.90	535	J 0.076	2.97	17.5	0.0084	1.79	1 0.023	> 0.0006	< 0.0007	< 0.0008	< 0.0012	< 8.8	< 12.0	< 12.0
	TOF 14f CO.C.	Facus+	Br/Sm	J.90	è	cku,u >	3.36	0.6	0.0109	1.05	J 0.020	< 0.0006	20000 >	< 0.0009	< 0.0012	< 9.5	< 13.0	< 13.0
		Baseline 95% UTL (mg/Kg)	'I (mg/kg)	14.52	1,908	0.656 0.325	8.80	20.70	0.0226	6.19	0.656 0.325	0.656 0.325 0.0074 0.0035 0.0074 0.0035 0.0074 0.0035 0.0074 0.0035	3:00.0 1:00.1	0.0071 0.0035	0.0071 0.0035	69.8 34.6	69.8 34.6	69.8 34.6
Notes:	12																	

Value = less than Sample Detection Limit (50L)
 J = Analyte detected below method detection limit (MDL)
 Baseline Soil sampling Event 9/6/2019

ATTACHMENT 1 REPLACEMENT PAGES (REDLINE/STRIKEOUT)

PERMIT MODIFICATION

PART III ATTACHMENT 12 FINAL CLOSURE PLAN

Prepared for

Brazos Valley Solid Waste Management Agency, Inc.

October 2001 Revised September 2021

Revised December 2021

Prepared by

Weaver Consultants Group, LLC

TBPE Registration No F-3727 6420 Southwest Blvd., Suite 206 Fort Worth, Texas 76109 817-735-9770

TABLE 12-2 ROCK PRAIRIE ROAD LANDFILL - PHYTO-UTILIZATION AREA CLOSURE COST

ft (Composite Final Cover) ft	Comments		00 Includes third party preparation of final cover design and construction plans including specifications (includes gradien design and revenatation)		permeability verifications, survey, and preparation of closure report. On Includes submittal of closure report and coordination with TCEQ.	00		8,500 Includes sampling, shipping, laboratory analysis and technical review of results of samples collected at six locations of 100-foot by 100-foot grid across the phyto utilization system area. Four samples collected at each sample location (2 in phyto utilization pad, and 2 in underlying erosion layer and infiltration layer).	50 Includes excavation and hauling of soil to Twin Oaks Landfill for disposal.	25 Includes excavation, hauling, and construction of a 1.5-foot thick clay material infiltration layer over the phyto utilization system area.				-	21	88	20	00	
ft (Compo	Total Cost		\$ 5,000	\$ 7,500	\$ 8,000	\$ 12,500 \$ 20,500		8,56	\$ 199,650	\$ 15,125	\$ 5,042	\$ 3,000	\$ 2,000	\$ 233,31	\$245,817 \$ 253,817	\$ 24.582 \$ 25.382	6	\$ 5,000	\$294 096 e 303 006
1.5	Unit ² Cost		\$ 5,000	\$ 7,500	\$ 8,000			8,500	\$ 15.00	\$ 5.00	\$ 2.50	\$ 2,000	\$ 2,000						
iltration Layer Thickness Erosion Layer Thickness	Unit1		rs	rs	rs			S	≿	≿	ζ	AC	rs			10%	1.5%	s s	
Infiltration Layer Thickness Erosion Layer Thickness	Quantity		1.0	1.0	1.0			-	13,310	3,025	2,017	ر ئن	-						
Area Requiring Final Cover 1.5 ac	Description	1.0 ENGINEERING	1.1 Development of Plans	1.2 Closure Inspection and Testing	1.3 TCEQ Reporting for Recertification of Final Cover Soils	ENGINEERING TOTAL	2.0 CONSTRUCTION	2.1 Testing of Phyto Utilization System Area Soil	2.2 Removal of Contaminated Soil (If Required)2.3 Final Cover System	2.3.1 Infiltration Layer	2.3.2 Erosion Layer	2.4 Revegetation	2.5 Removal of Onsite Storage Tanks	CONSTRUCTION TOTAL	ENGINEERING & CONSTRUCTION SUBTOTAL	3.0 CONTINGENCY	4.0 CONTRACT PERFORMANCE BOND	5.0 LEGAL FEES 6.0 TCEQ ADMINISTRATION OF CONTRACTS	TOTAL CLOSURE COST

¹LS = Lump Sum, AC = acres, CY = cubic yards.

²Unit Costs are in 2021 dollars. Unit costs are based on current market conditions, typical engineering costs, and industry standards related to construction and reflect input from BVSWMA, Inc. and Weaver Consultants Group, LLC.

Weaver Consultants Group, LLC

PERMIT MODIFICATION

PART III ATTACHMENT 15 LEACHATE AND CONTAMINATED WATER PLAN

Prepared for

Brazos Valley Solid Waste Management Agency, Inc.

Revised September 2021

Revised December 2021

Prepared by

Weaver Consultants Group, LLC TBPE Registration No F-3727 6420 Southwest Blvd., Suite 206 Fort Worth, Texas 76109 817-735-9770

PERMIT MODIFICATION

PART III ATTACHMENT 15 APPENDIX 5 PHYTO-UTILIZATION SYSTEM INFORMATION

Prepared for

Brazos Valley Solid Waste Management Agency, Inc.

September 2021

Revised December 2021

Prepared by

Weaver Consultants Group, LLC TBPE Registration No F-3727

6420 Southwest Blvd., Suite 206 Fort Worth, Texas 76109 817-735-9770

2.3 Phyto-Utilization System Maintenance

Maintenance will be conducted throughout the use of the phyto-utilization system. The control system will include a notification system that will notify personnel of any alarms or automatic shutdown of the distribution system. In addition, regular inspections and maintenance of the control and distribution system will occur. Equipment repairs, replanting, and mowing will occur as necessary based on actual site conditions.

2.4 Phyto-Utilization System Monitoring

The behavior of metals in soils is affected by a multitude of highly complex geochemical processes influenced by soil composition, structure, saturation, temperature, degree of heterogeneity, etc. The continuous interaction of these processes can make it difficult to establish an accurate background concentration limit without collecting and testing an abundance of statistically independent background samples intermittently over an extended period of time. This is due to the variability of natural gechemical processes including stratification and seasonality among others.

For these reasons, a A two-tiered compliance monitoring protocol is proposed that includes comparison of analytical results to a risk-based action level concentration the 95% UTL coupled with verification resampling. An action level equal to 50 percent of the Tier 1 Residential Soil PCLs is proposed as an upper limit to the total metals concentrations detected in individual soil samples collected as part of routine pad soil compliance monitoring. This action-level fascilitates the use of established human health exposure risk-based standards for soil data comparison. Using 50 percent of the PCL concentration establishes a conservative risk-based threshold for evaluating total metals concentrations in the pad soils. In the event that a metal concentration exceeds 50 percent the PCL the 95% UTL, the facility will conduct resampling within 90 days to either verify or disconfirm the initial apparent exceedance. This verification resampling strategy is similar to the 1 of 2 testing startegy used in many aqueous sampling statistical protocols and is designed with the purpose of reducing false positives in analytical testing results. If an exceedance is verified by the resampling results, the facility will notify TCEQ in writing and provide a proposed course of action in response to the exceedance. It is noted that because the threshold for an exceedance equates to 50 percent the PCL concentration, identification of an exceedance does not necessarily have any direct regulatory implications. However, the facility may cease leachate application while consulting with TCEQ to establish a proposed course of action.

Volatile organic compounds (VOCs) are not commonly naturally ocurring in surface soils. TPH and BTEX constituents have not been detected at or above the method detection limit (MDL) in any of the collected soil samples to-date. Therefore, the MDL is proposed as a highly conservative action level for TPH and BTEX. This strategy is similar to the double quantification rule (DQR) used in many aqueous sampling statistical protocols.

In the event that TPH or BTEX constituents are detected at or above the MDL, the facility will firstly conduct resampling within 90 days to verify or disconfirm the initial apparent exceedance. If an exceedance is confirmed by the resampling results, the facility will notify TCEQ in writing and provide a proposed course of action in response to the exceedance in the same manner as described for a metals exceedance.

Soil sampling will be conducted on a semiannual frequency. The following summarized the soil sampling and evaluation procedures:

- A 100-foot by 100-foot sampling grid will be established across the phyto-utilization area.
- Soil samples will be obtained within each grid area and collected from a depth of 3feet below surface grade which equates to 1 foot above the bottom of the phytoutilization soil pad fill.
- Soil samples will be analyzed for the eight RCRA total metals, Total Petroleum Hydrocarbons (TPH), and BTEX constituents (benzene, toluene, ethylbenzene, and xylenes) by a NELAC-certified environmental testing laboratory accreditted in the state of Texas.
- The testing results will be filed in the facility's Site Operating Record within 90 days of sampling.
- Any TPH or BTEX constituent that is detected at or above the MDL 95% UTL will be considered an exceedance.
- The total metal analytical results will be compared to the action levels listed in Table 1 which equate to 50% the Tier 1 residential soil PCLs.
- If an action level is exceeded by an individual soil sample's analytical concentration, verification resampling will be conducted. The facility will resample the location within 90 days of the soil sampling date for the analytical concentration exhibiting the unverified exceedance.
- If the resampling results do not verify the initial apparent action level exceedance, the facility will document the results in the SOR and no further action will be required.
- If the initial exceedance is verified by the resampling results, the facility will notify TCEQ in writing within 14 days of the exceedance verification. The notification submittal will include a copy of the laboratory analytical testing reports and a recommendation for a proposed course of action.

Table 1 **Action Levels for Total Metals**

Constituent	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Selenium (mg/kg)	Silver (mg/kg)
Tier 1 Residential Soil PCL	24	8,100	52	33,000	500	3.6	310	97
Action Level (50% the PCL)	12	4,050	26	16,500	250	1.8	155	48.5

3 DECOMMISSIONING OF PHYTO-UTILIZATION SYSTEM

Prior to excavating and/or disposing of phyto-utilization soils and plantings, laboratory testing will be performed of the soils to determine their suitability for use as clean soil fill or for off-site disposal into a permitted landfill. Soil sampling and testing procedures will be conducted in the same manner as the semiannual compliance monitoring discussed in Section 2.4.

Any required removal of the final cover system will be repaired consistent with the permitted Final Cover Quality Control Plan. Soils (and vegetative cover) found to be below action level concentrations will be either left in place or regraded (if necessary) to ensure positive drainage is maintained. Refer to Attachment 12 for the phyto-utilization system closure cost.

ATTACHMENT 2 REPLACEMENT PAGES (CLEAN)

PERMIT MODIFICATION

PART III ATTACHMENT 12 FINAL CLOSURE PLAN

Prepared for

Brazos Valley Solid Waste Management Agency, Inc.

October 2001 Revised September 2021

Revised December 2021

Prepared by

Weaver Consultants Group, LLC TBPE Registration No F-3727 6420 Southwest Blvd., Suite 206 Fort Worth, Texas 76109 817-735-9770

TABLE 12-2 ROCK PRAIRIE ROAD LANDFILL - PHYTO-UTILIZATION AREA CLOSURE COST

Area Requiring Final Cover	Infiltration Layer Thickness Erosion Layer Thickness	Thickness r Thickness	1.5	ft (Composi ft	ft (Composite Final Cover) ft
Description	Quantity	Unit ¹	Unit ² Cost	Total Cost	Comments
1.0 ENGINEERING					
1.1 Development of Plans	1.0	ST	\$ 2,000 \$	5,000	
1.2 Closure Inspection and Testing	1.0	S	\$ 7,500 \$	7,500	
1.3 TCEQ Reporting for Recertification of Final Cover Soils	1.0	rs	\$ 000'8 \$	8,000	permeability verifications, survey, and preparation of closure report. Includes submittal of closure report and coordination with TCEQ.
ENGINEERING TOTAL				\$ 20,500	
2.0 CONSTRUCTION					
 Testing of Phyto Utilization System Area Soil 	-	rs	8,500		8,500 Includes sampling, shipping, laboratory analysis and technical review of results of samples collected at six locations of 100-foot by 100-foot grid across the phyto utilization system area. Four samples collected at each sample location (2 in phyto utilization pad, and 2 in underlying erosion layer and infiltration layer).
2.2 Removal of Contaminated Soil (If Required)2.3 Final Cover System	13,310	ζ	\$ 15.00 \$	199,650	Includes excavation and hauling of soil to Twin Oaks Landfill for disposal.
2.3.1 Infiltration Layer	3,025	ζ	\$ 5.00	15,125	Includes excavation, hauling, and construction of a 1.5-foot thick clay material infiltration layer over the phyto utilization system area.
2.3.2 Erosion Layer	2,017	ζ	\$ 2.50	5,042	_
2.4 Revegetation	1.5	AC	\$ 2,000 \$	3,000	_ "
2.5 Removal of Onsite Storage Tanks	_	rs	\$ 2,000 \$	2,000	
CONSTRUCTION TOTAL				\$ 233,317	
ENGINEERING & CONSTRUCTION SUBTOTAL				\$ 253,817	
3.0 CONTINGENCY		10%		\$ 25.382	
4.0 CONTRACT PERFORMANCE BOND		1.5%			
5.0 LEGAL FEES 6.0 TCEQ ADMINISTRATION OF CONTRACTS		S S		\$ 5,000 \$ 5,000	
TOTAL CLOSURE COST				\$ 293,006	

LS = Lump Sum, AC = acres, CY = cubic yards.

²Unit Costs are in 2021 dollars. Unit costs are based on current market conditions, typical engineering costs, and industry standards related to construction and reflect input from BVSWMA, Inc. and Weaver Consultants Group, LLC.

12

Weaver Consultants Group, LLC

PERMIT MODIFICATION

PART III ATTACHMENT 15 LEACHATE AND CONTAMINATED WATER PLAN

Prepared for

Brazos Valley Solid Waste Management Agency, Inc.

Revised September 2021

Revised December 2021

Prepared by

Weaver Consultants Group, LLC

TBPE Registration No F-3727 6420 Southwest Blvd., Suite 206 Fort Worth, Texas 76109 817-735-9770

PERMIT MODIFICATION

PART III ATTACHMENT 15 APPENDIX 5 PHYTO-UTILIZATION SYSTEM INFORMATION

Prepared for

Brazos Valley Solid Waste Management Agency, Inc.

September 2021

Revised December 2021

Prepared by

Weaver Consultants Group, LLC TBPE Registration No F-3727 6420 Southwest Blvd., Suite 206 Fort Worth, Texas 76109 817-735-9770

2.3 Phyto-Utilization System Maintenance

Maintenance will be conducted throughout the use of the phyto-utilization system. The control system will include a notification system that will notify personnel of any alarms or automatic shutdown of the distribution system. In addition, regular inspections and maintenance of the control and distribution system will occur. Equipment repairs, replanting, and mowing will occur as necessary based on actual site conditions.

2.4 Phyto-Utilization System Monitoring

A two-tiered compliance monitoring protocol is proposed that includes comparison of analytical results to the 95% UTL coupled with verification resampling. In the event that a concentration exceeds the 95% UTL, the facility will conduct resampling within 90 days to either verify or disconfirm the initial apparent exceedance. This verification resampling strategy is similar to the 1 of 2 testing startegy used in many aqueous sampling statistical protocols and is designed with the purpose of reducing false positives in analytical testing results. If an exceedance is verified by the resampling results, the facility will notify TCEQ in writing and provide a proposed course of action in response to the exceedance.

Soil sampling will be conducted on a semiannual frequency. The following summarized the soil sampling and evaluation procedures:

- A 100-foot by 100-foot sampling grid will be established across the phyto-utilization area.
- Soil samples will be obtained within each grid area and collected from a depth of 3-feet below surface grade which equates to 1 foot above the bottom of the phyto-utilization soil pad fill.
- Soil samples will be analyzed for the eight RCRA total metals, Total Petroleum Hydrocarbons (TPH), and BTEX constituents (benzene, toluene, ethylbenzene, and xylenes) by a NELAC-certified environmental testing laboratory accreditted in the state of Texas.
- The testing results will be filed in the facility's Site Operating Record within 90 days of sampling.
- Any constituent that is detected at or above the 95% UTL will be considered an exceedance.
- If an action level is exceeded by an individual soil sample's analytical concentration, verification resampling will be conducted. The facility will resample the location within 90 days of the soil sampling date for the analytical concentration exhibiting the unverified exceedance.
- If the resampling results do not verify the initial apparent action level exceedance, the facility will document the results in the SOR and no further action will be required.
- If the initial exceedance is verified by the resampling results, the facility will notify TCEQ in writing within 14 days of the exceedance verification. The notification submittal will include a copy of the laboratory analytical testing reports and a recommendation for a proposed course of action.

3 DECOMMISSIONING OF PHYTO-UTILIZATION SYSTEM

Prior to excavating and/or disposing of phyto-utilization soils and plantings, laboratory testing will be performed of the soils to determine their suitability for use as clean soil fill or for off-site disposal into a permitted landfill. Soil sampling and testing procedures will be conducted in the same manner as the semiannual compliance monitoring discussed in Section 2.4.

Any required removal of the final cover system will be repaired consistent with the permitted Final Cover Quality Control Plan. Soils (and vegetative cover) found to be below action level concentrations will be either left in place or regraded (if necessary) to ensure positive drainage is maintained. Refer to Attachment 12 for the phyto-utilization system closure cost.

APPENDIX C TCEQ – 20650 FORM

Facility Name: Rock Prairie Road Landfill

Permittee/Registrant Name: Brazos Valley Solid Waste Management Agency, Inc.

MSW Authorization #: 1444C
Initial Submittal Date: 09/01/2021

Revision Date: 12/09/2021

Texas Commission on Environmental Quality

Permit/Registration Modification and Temporary Authorization Application Form for an MSW Facility

1.	Reason for Submittal		
	☐ Initial Submittal	\boxtimes	Notice of Deficiency (NOD) Response
2.	Authorization Type		
	□ Permit		Registration
3.	Application Type		
	☐ Modification with Public Not	ice	Modification without Public Notice
	☐ Temporary Authorization (1	A)	☐ Modification for Name Change/Transfer
4	Application Fees		
7.	_		
	Pay by Check	\boxtimes	Online Payment
	If paid online, enter ePay Trace	Nu	mber: 582EA000450426
5.	Application URL		
	Is the application submitted for	ap	permit/registration modification with public notice?
	☐ Yes ⊠ No		
	If the answer is "Ves" enter th	اللم	RL address of a publicly accessible internet web site
	where the application and all reprovided: http://	evisi	ions to that application will be posted in the space
	6 Gidankial Bassumanka		
6.	Confidential Documents		
	Does the application contain co	nfic	lential documents?
	☐ Yes		
			dential documents throughout the application and

Facility Name: Rock Prairie Road Landfill

MSW Authorization #: 1444C

Initial Submittal Date: 09/01/2021

Revision Date: 12/09/2021

7.	General Facility Infor	mation									
	Facility Name: Rock Pi	rairie Road Landfill									
	MSW Authorization No.:	1444C									
	Regulated Entity Refere	nce No.: 100830090									
	Physical or Street Addre	ess (if available): 7600 Roc	k Prairie Road								
	City: College Station	County: Brazos State: Te	exas Zip Code: 77842								
	(Area code) Telephone I	Number:									
	Latitude: 30.58 Longit	tude: -96.25									
8.	Facility Type(s)										
	⊠ Type I	☐ Type IV	☐ Type V								
	☐ Type I AE ☐ Type IV AE ☐ Type VI										
According to the											
9.	Description of the Rev	visions to the Facility									
	supporting documents r provisions under which	eferred by the permit/registr the modification/temporary a	mit/registration conditions and ration, and a reference to the specific authorization application is being ification/temporary authorization is								
			t is to allow for the use of a er grass at the Rock Prairie Road								

This section is intentionally left blank; please continue to the next page.

Initial Submittal Date: 09/01/2021 Facility Name: Rock Prairie Road Landfill Revision Date: 12/09/2021

MSW Authorization #: 1444C

10. Facility Contact Information

Site Operator (Permittee/Registrant) Name: Brazos Valley Solid Waste Management Agency, Inc.

Customer Reference No. (if issued)*: CN600340194

Mailing Address: P.O. Box 9960

City: College Station County: Brazos State: Texas Zip Code: 77842-7960

(Area Code) Telephone Number: (979) 764-3878

Email Address: sbest@BVSWMA.com

TX Secretary of State (SOS) Filing Number:

*If the Site Operator (Permittee/Registrant) does not have this number, complete a TCEQ Core Data Form (TCEQ-10400) and submit it with this application. List the Site Operator (Permittee/Registrant) as the Customer.

Operator Name¹: Same as Site Operator (Permittee/Registrant)

Customer Reference No. (if issued)*:

Mailing Address:

County: City:

State:

Zip Code:

(Area Code) Telephone Number:

Email Address:

Charter Number:

¹If the Operator is the same as Site Operator/Permittee type "Same as "Site Operator (Permittee/Registrant)". *If the Operator does not have this number, complete a TCEQ Core Data Form (TCEQ-10400) and submit it with this application. List the Operator as the customer.

Consultant Name (if applicable): Weaver Consultants Group, LLC

Texas Board of Professional Engineers Firm Registration Number: F-3727

Mailing Address: 6420 Southwest Boulevard, Suite 206

City: Fort Worth County: Tarrant State: Texas Zip Code: 76109

(Area Code) Telephone Number: 817-735-9770

E-Mail Address: jedwards@wcgrp.com

Agent in Service Name (required only for out-of-state):

Mailing Address:

City:

County:

State:

Zip Code:

(Area Code) Telephone Number:

E-Mail Address:

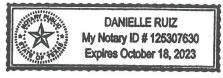
Facility Name: Rock Prairie Road Landfill

MSW Authorization #: 1444C

Initial Submittal Date: 09/01/2021

Revision Date: 12/09/2021

11	. Ownership St	atus of the F	acility	
	Is this a modific Operator (Permi		-	scription, the property owner, or the Site
	Yes	⊠ No		
	If the answer is	"No", skip this	section.	
	Does the Site Opproperty?	perator (Permit	ttee/Registrant)	own all the facility units and all the facility
	Yes	☐ No		
	If "No", provide	the information	n requested belo	w for any additional ownership.
	Owner Name:			
	Street or P.O. Bo	ox:		
	City: C	ounty:	State:	Zip Code:
	(Area Code) Tele	ephone Numbe	r:	
	Email Address (optional):		
	Charter Number	:		


Facility Name: Rock Prairie Road Landfill Initial Submittal Date: 09/01/2021

MSW Authorization #: 1444C

Revision Date: 12/15/2021

Signature Page

I, <u>Bryan Griesbach</u> , <u>Executive Director</u> , (Site Operator (Permittee/Registrant)'s Authorized Signatory) (Title)
certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.
Signature: My Sull Date: 12-16-21
TO BE COMPLETED BY THE OPERATOR IF THE APPLICATION IS SIGNED BY AN AUTHORIZED REPRESENTATIVE FOR THE OPERATOR
I,, hereby designate (Print or Type Operator Name) (Print or Type Representative Name)
as my representative and hereby authorize said representative to sign any application, submit additional information as may be requested by the Commission; and/or appear for me at any hearing or before the Texas Commission on Environmental Quality in conjunction with this request for a Texas Water Code or Texas Solid Waste Disposal Act permit. I further understand that I am responsible for the contents of this application, for oral statements given by my authorized representative in support of the application, and for compliance with the terms and conditions of any permit which might be issued based upon this application.
Printed or Typed Name of Operator or Principal Executive Officer
Signature
SUBSCRIBED AND SWORN to before me by the said BYUM AVICUAL On this day of Oll, 2000 day of

Facility Name: Rock Prairie Road Landfill Initial Submittal Date: 09/01/2021 MSW Authorization #: 1444C Revision Date: 12/09/2021

Permit/Registration Modification with Public Notice

(See Instructions for P.E. seal requirements.) Attachment No. **Required Attachments** Land Ownership Map Land Ownership List Marked (Redline/Strikeout) Pages Unmarked Revised Pages Additional Attachments as Applicable- Select all those apply and add as necessary ☐ Signatory Authority ☐ Fee Payment Receipt Confidential Documents

Facility Name: Rock Prairie Road Landfill Initial Submittal Date: 09/01/2021 MSW Authorization #: 1444C Revision Date: 12/09/2021

Permit/Registration Modification without Public Notice or TA

(See Instructions for P.E. seal requirements.)

Required Attachments (for Modifications only)

Marked (Redline/Strikeout) Pages

Unmarked Revised Pages

Additional Attachments as Applicable- Select all those apply and add as necessary

Signatory Authority

Fee Payment Receipt

Confidential Documents

Facility Name: Rock Prairie Road Landfill Initial Submittal Date: 09/01/2021 MSW Authorization #: 1444C Revision Date: 12/09/2021

Permit/Registration Name Change/Transfer Modification

(See Instructions for P.E. seal requirements.) Attachment No. **Required Attachments** TCEQ Core Data Form(s) Property Legal Description Property Metes and Bounds Description Metes and Bounds Drawings On-Site Easements Drawing Land Ownership List Land Ownership Map Property Owner Affidavit Verification of Legal Status **Evidence of Competency** Additional Attachments as Applicable- Select all those apply and add as necessary ☐ Signatory Authority Fee Payment Receipt ☐ Confidential Documents ☐ Final Plat Record of Property, if platted

☐ Assumed Name Certificate